Martine Devic, Louis Dennu, Jean-Claude Lozano, Cédric Mariac, Valérie Vergé, Philippe Schatt, François-Yves Bouget, François Sabot
{"title":"An INDEL genomic approach to explore population diversity of phytoplankton.","authors":"Martine Devic, Louis Dennu, Jean-Claude Lozano, Cédric Mariac, Valérie Vergé, Philippe Schatt, François-Yves Bouget, François Sabot","doi":"10.1186/s12864-024-10896-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although metabarcoding and metagenomic approaches have generated large datasets on worldwide phytoplankton species diversity, the intraspecific genetic diversity underlying the genetic adaptation of marine phytoplankton to specific environmental niches remains largely unexplored. This is mainly due to the lack of biological resources and tools for monitoring the dynamics of this diversity in space and time.</p><p><strong>Results: </strong>To gain insight into population diversity, a novel method based on INDEL markers was developed on Bathycoccus prasinos (Mamiellophyceae), an abundant and cosmopolitan species with strong seasonal patterns. Long read sequencing was first used to characterize structural variants among the genomes of six B. prasinos strains sampled from geographically distinct regions in the world ocean. Markers derived from identified insertions/deletions were validated by PCR then used to genotype 55 B. prasinos strains isolated during the winter bloom 2018-2019 in the bay of Banyuls-sur-Mer (Mediterranean Sea, France). This led to their classification into eight multi-loci genotypes and the sequencing of strains representative of local diversity, further improving the available genetic diversity of B. prasinos. Finally, selected markers were directly tracked on environmental DNA sampled during 3 successive blooms from 2018 to 2021, showcasing a fast and cost-effective approach to follow local population dynamics.</p><p><strong>Conclusions: </strong>This method, which involves (i) pre-identifying the genetic diversity of B. prasinos in environmental samples by PCR, (ii) isolating cells from selected environmental samples and (iii) identifying genotypes representative of B. prasinos diversity for sequencing, can be used to comprehensively describe the diversity and population dynamics not only in B. prasinos but also potentially in other generalist phytoplankton species.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1045"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539686/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-10896-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Although metabarcoding and metagenomic approaches have generated large datasets on worldwide phytoplankton species diversity, the intraspecific genetic diversity underlying the genetic adaptation of marine phytoplankton to specific environmental niches remains largely unexplored. This is mainly due to the lack of biological resources and tools for monitoring the dynamics of this diversity in space and time.
Results: To gain insight into population diversity, a novel method based on INDEL markers was developed on Bathycoccus prasinos (Mamiellophyceae), an abundant and cosmopolitan species with strong seasonal patterns. Long read sequencing was first used to characterize structural variants among the genomes of six B. prasinos strains sampled from geographically distinct regions in the world ocean. Markers derived from identified insertions/deletions were validated by PCR then used to genotype 55 B. prasinos strains isolated during the winter bloom 2018-2019 in the bay of Banyuls-sur-Mer (Mediterranean Sea, France). This led to their classification into eight multi-loci genotypes and the sequencing of strains representative of local diversity, further improving the available genetic diversity of B. prasinos. Finally, selected markers were directly tracked on environmental DNA sampled during 3 successive blooms from 2018 to 2021, showcasing a fast and cost-effective approach to follow local population dynamics.
Conclusions: This method, which involves (i) pre-identifying the genetic diversity of B. prasinos in environmental samples by PCR, (ii) isolating cells from selected environmental samples and (iii) identifying genotypes representative of B. prasinos diversity for sequencing, can be used to comprehensively describe the diversity and population dynamics not only in B. prasinos but also potentially in other generalist phytoplankton species.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.