Yanjie Peng, DanTong Wu, Mingyuan Tian, Yanyin Zhou, Xiaohong Peng, Zhenlei Peng, Ke Gong, Kezhi Liu, Jing Chen, Wei Lei
{"title":"Neurophysiological characteristics of reward processing in individuals at different levels of gaming.","authors":"Yanjie Peng, DanTong Wu, Mingyuan Tian, Yanyin Zhou, Xiaohong Peng, Zhenlei Peng, Ke Gong, Kezhi Liu, Jing Chen, Wei Lei","doi":"10.1093/cercor/bhae436","DOIUrl":null,"url":null,"abstract":"<p><p>Altered reward processing has been repeatedly reported in Internet gaming disorder (IGD). However, it remains unclear whether these changes are linked to the severity of addictive symptoms or the extent of gaming experience. This study examined the neurophysiological responses regarding reward anticipation and consummation in individuals at different levels of gaming (including 22 casual gamers, 31 regular gamers, and 27 individuals with IGD) through a monetary incentive delay task. Three event-related potential components during reward anticipation-cue-related P300 (Cue-P3), contingent negative variation, and stimulus-preceding negativity (SPN)-and two during reward consummation-feedback-related negativity and feedback-related P300 (FB-P3)-were measured. We found that IGD individuals exhibited greater Cue-P3 but lower SPN amplitude compared to casual gamers, while regular gamers fell between the two without significant differences. Regressions indicated that more extensive gaming experience, rather than the severity of the symptoms, primarily contributed to the increased Cue-P3 in IGD. No group differences were found during reward consummation. Our results highlight disrupted reward anticipation processing in IGD, characterized by increased attention bias toward reward cues (Cue-P3) but diminished cognitive resources for reward anticipation (SPN) and emphasize the role of gaming experience in increased attention bias in IGD.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae436","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Altered reward processing has been repeatedly reported in Internet gaming disorder (IGD). However, it remains unclear whether these changes are linked to the severity of addictive symptoms or the extent of gaming experience. This study examined the neurophysiological responses regarding reward anticipation and consummation in individuals at different levels of gaming (including 22 casual gamers, 31 regular gamers, and 27 individuals with IGD) through a monetary incentive delay task. Three event-related potential components during reward anticipation-cue-related P300 (Cue-P3), contingent negative variation, and stimulus-preceding negativity (SPN)-and two during reward consummation-feedback-related negativity and feedback-related P300 (FB-P3)-were measured. We found that IGD individuals exhibited greater Cue-P3 but lower SPN amplitude compared to casual gamers, while regular gamers fell between the two without significant differences. Regressions indicated that more extensive gaming experience, rather than the severity of the symptoms, primarily contributed to the increased Cue-P3 in IGD. No group differences were found during reward consummation. Our results highlight disrupted reward anticipation processing in IGD, characterized by increased attention bias toward reward cues (Cue-P3) but diminished cognitive resources for reward anticipation (SPN) and emphasize the role of gaming experience in increased attention bias in IGD.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.