Bowen Yan, Lin Zeng, Yanyi Lu, Min Li, Weiping Lu, Bangfu Zhou, Qinghua He
{"title":"Rapid bacterial identification through volatile organic compound analysis and deep learning.","authors":"Bowen Yan, Lin Zeng, Yanyi Lu, Min Li, Weiping Lu, Bangfu Zhou, Qinghua He","doi":"10.1186/s12859-024-05967-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The increasing antimicrobial resistance caused by the improper use of antibiotics poses a significant challenge to humanity. Rapid and accurate identification of microbial species in clinical settings is crucial for precise medication and reducing the development of antimicrobial resistance. This study aimed to explore a method for automatic identification of bacteria using Volatile Organic Compounds (VOCs) analysis and deep learning algorithms.</p><p><strong>Results: </strong>AlexNet, where augmentation is applied, produces the best results. The average accuracy rate for single bacterial culture classification reached 99.24% using cross-validation, and the accuracy rates for identifying the three bacteria in randomly mixed cultures were SA:98.6%, EC:98.58% and PA:98.99%, respectively.</p><p><strong>Conclusion: </strong>This work provides a new approach to quickly identify bacterial microorganisms. Using this method can automatically identify bacteria in GC-IMS detection results, helping clinical doctors quickly detect bacterial species, accurately prescribe medication, thereby controlling epidemics, and minimizing the negative impact of bacterial resistance on society.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05967-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The increasing antimicrobial resistance caused by the improper use of antibiotics poses a significant challenge to humanity. Rapid and accurate identification of microbial species in clinical settings is crucial for precise medication and reducing the development of antimicrobial resistance. This study aimed to explore a method for automatic identification of bacteria using Volatile Organic Compounds (VOCs) analysis and deep learning algorithms.
Results: AlexNet, where augmentation is applied, produces the best results. The average accuracy rate for single bacterial culture classification reached 99.24% using cross-validation, and the accuracy rates for identifying the three bacteria in randomly mixed cultures were SA:98.6%, EC:98.58% and PA:98.99%, respectively.
Conclusion: This work provides a new approach to quickly identify bacterial microorganisms. Using this method can automatically identify bacteria in GC-IMS detection results, helping clinical doctors quickly detect bacterial species, accurately prescribe medication, thereby controlling epidemics, and minimizing the negative impact of bacterial resistance on society.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.