Cyclosporin H Improves the Transduction of CD34+ Cells with an Anti-Sickling Globin Vector, a Possible Therapeutic Approach for Sickle Cell Disease.

IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Human gene therapy Pub Date : 2024-11-01 Epub Date: 2024-11-06 DOI:10.1089/hum.2024.098
Mirella Mormin, Luc Rigonnot, Anne Chalumeau, Annarita Miccio, Clémence Fournier, Sandya Pajanissamy, Marie Dewannieux, Anne Galy
{"title":"Cyclosporin H Improves the Transduction of CD34<sup>+</sup> Cells with an Anti-Sickling Globin Vector, a Possible Therapeutic Approach for Sickle Cell Disease.","authors":"Mirella Mormin, Luc Rigonnot, Anne Chalumeau, Annarita Miccio, Clémence Fournier, Sandya Pajanissamy, Marie Dewannieux, Anne Galy","doi":"10.1089/hum.2024.098","DOIUrl":null,"url":null,"abstract":"<p><p>Sickle cell disease (SCD) is a debilitating monogenic disease originating from mutations in the hemoglobin beta chain gene producing an abnormal hemoglobin HbS. The polymerization of HbS is responsible for the sickling of erythrocytes leading to anemia and vaso-occlusive events. Gene therapy is a promising treatment of SCD, and two different gene therapy drugs, using gene editing or gene transfer, have already reached the marketing stage. There is still a need to improve the efficacy of gene therapy in SCD, particularly when using anti-sickling beta-globin gene transfer strategies, which must outcompete the pathological HbS. One possibility is to increase transduction by inhibiting lentiviral restriction factors such as interferon-induced transmembrane proteins (IFITMs). This can be achieved by the addition of cyclosporin H (CsH) during the transduction process. This strategy was applied here in CD34<sup>+</sup> hematopoietic progenitor and stem cells obtained from cord blood (CB). A first series of experiments with lentiviral vector coding for a green fluorescent protein (GFP) gene confirmed that the addition of CsH enhanced transgene expression levels and vector copy number per cell (VCN), while CD34<sup>+</sup> cells remained viable and functional. Notably, the production of colony-forming cells (CFC) remained unaffected unless very high VCN values were reached. In a second step, CD34<sup>+</sup> cells obtained from the CB of newborns with homozygous (<i>n</i> = 2) or heterozygous (<i>n</i> = 1) SCD mutations were transduced with the GLOBE-AS3 lentiviral vector coding for the HbAS3 anti-sickling beta globin. As with GFP, GLOBE-AS3 lentiviral transduction was clearly enhanced by CsH, leading to VCN > 2 and therapeutic levels of expression of the HbAS3. Moreover, the process did not affect the viability or functions of CFC. The combination of CB progenitors, the GLOBE-AS3 vector, and CsH is thus shown here to be a promising approach for the treatment of SCD.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"896-903"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2024.098","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sickle cell disease (SCD) is a debilitating monogenic disease originating from mutations in the hemoglobin beta chain gene producing an abnormal hemoglobin HbS. The polymerization of HbS is responsible for the sickling of erythrocytes leading to anemia and vaso-occlusive events. Gene therapy is a promising treatment of SCD, and two different gene therapy drugs, using gene editing or gene transfer, have already reached the marketing stage. There is still a need to improve the efficacy of gene therapy in SCD, particularly when using anti-sickling beta-globin gene transfer strategies, which must outcompete the pathological HbS. One possibility is to increase transduction by inhibiting lentiviral restriction factors such as interferon-induced transmembrane proteins (IFITMs). This can be achieved by the addition of cyclosporin H (CsH) during the transduction process. This strategy was applied here in CD34+ hematopoietic progenitor and stem cells obtained from cord blood (CB). A first series of experiments with lentiviral vector coding for a green fluorescent protein (GFP) gene confirmed that the addition of CsH enhanced transgene expression levels and vector copy number per cell (VCN), while CD34+ cells remained viable and functional. Notably, the production of colony-forming cells (CFC) remained unaffected unless very high VCN values were reached. In a second step, CD34+ cells obtained from the CB of newborns with homozygous (n = 2) or heterozygous (n = 1) SCD mutations were transduced with the GLOBE-AS3 lentiviral vector coding for the HbAS3 anti-sickling beta globin. As with GFP, GLOBE-AS3 lentiviral transduction was clearly enhanced by CsH, leading to VCN > 2 and therapeutic levels of expression of the HbAS3. Moreover, the process did not affect the viability or functions of CFC. The combination of CB progenitors, the GLOBE-AS3 vector, and CsH is thus shown here to be a promising approach for the treatment of SCD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环孢素 H 可改善 CD34+ 细胞与抗镰状球蛋白载体的转导,这是治疗镰状细胞病的一种可能方法。
镰状细胞病(SCD)是一种使人衰弱的单基因疾病,源于血红蛋白 beta 链基因突变产生异常血红蛋白 HbS。HbS 的聚合导致红细胞镰状化,进而引起贫血和血管闭塞。基因疗法是治疗 SCD 的一种很有前景的方法,目前已有两种不同的基因疗法药物通过基因编辑或基因转移进入市场。目前仍需提高基因疗法在 SCD 中的疗效,尤其是在使用抗镰状细胞β-球蛋白基因转移策略时,因为这种策略必须能与病理 HbS 竞争。一种可能性是通过抑制慢病毒限制因子(如干扰素诱导跨膜蛋白(IFITMs))来增加转导。这可以通过在转导过程中加入环孢素 H(CsH)来实现。本文将这一策略应用于从脐带血(CB)中提取的 CD34+ 造血祖细胞和干细胞。用编码绿色荧光蛋白(GFP)基因的慢病毒载体进行的第一轮实验证实,添加 CsH 提高了转基因表达水平和每个细胞的载体拷贝数(VCN),而 CD34+ 细胞仍能存活并发挥功能。值得注意的是,除非达到非常高的 VCN 值,否则集落形成细胞(CFC)的生成不受影响。第二步,用编码 HbAS3 抗镰状β球蛋白的 GLOBE-AS3 慢病毒载体转染从同种(n = 2)或异种(n = 1)SCD 突变新生儿 CB 中获得的 CD34+ 细胞。与 GFP 一样,CsH 明显增强了 GLOBE-AS3 慢病毒转导,导致 VCN > 2 和 HbAS3 的治疗水平表达。此外,这一过程不会影响 CFC 的活力或功能。因此,CB 祖细胞、GLOBE-AS3 载体和 CsH 的结合被证明是治疗 SCD 的一种很有前景的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human gene therapy
Human gene therapy 医学-生物工程与应用微生物
CiteScore
6.50
自引率
4.80%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
期刊最新文献
Neuroimaging Applications for the Delivery and Monitoring of Gene Therapy for Central Nervous System Diseases. Oncolytic Vaccinia Virus Encoding Aphrocallistes vastus Lectin Suppresses the Proliferation of Gastric Cancer Cells. Suppression of CNS APOE4 Expression by miRNAs Delivered by the S2 AAVrh.10 Capsid-Modified AAV Vector. Lentiviral Vector-Mediated Ex Vivo Hematopoietic Stem Cell Gene Therapy for Mucopolysaccharidosis IVA Murine Model. Cyclosporin H Improves the Transduction of CD34+ Cells with an Anti-Sickling Globin Vector, a Possible Therapeutic Approach for Sickle Cell Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1