Pharmaceutical, Clinical, and Regulatory Challenges of Reformulating Pressurized Metered-Dose Inhalers to Reduce Their Environmental Impact.

IF 2 4区 医学 Q3 RESPIRATORY SYSTEM Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-11-06 DOI:10.1089/jamp.2024.0023
Nicolas Roche, Omar Usmani, Laura Franzini, Lorenza Labadini, Kusum S Mathews, Sara Panigone, Job F M van Boven
{"title":"Pharmaceutical, Clinical, and Regulatory Challenges of Reformulating Pressurized Metered-Dose Inhalers to Reduce Their Environmental Impact.","authors":"Nicolas Roche, Omar Usmani, Laura Franzini, Lorenza Labadini, Kusum S Mathews, Sara Panigone, Job F M van Boven","doi":"10.1089/jamp.2024.0023","DOIUrl":null,"url":null,"abstract":"<p><p>The chlorofluorocarbons (CFCs) that were used as propellants in early pressurized metered-dose inhalers (pMDIs) had substantial ozone-depleting potential. Following the Montreal Protocol in 1987, the manufacture of a range of ozone-depleting substances, including CFCs, was gradually phased out, which required the propellants used in pMDIs to be replaced. Current pMDIs use hydrofluoroalkanes (HFAs) as propellants, such as 1,1,1,2-tetrafluoroethane (HFA-134a). Although these HFAs have no ozone-depleting potential, they have a high global warming potential (GWP), and consequently, their use is being phased down. One option for the discontinuation of HFA use in inhalers would be to discontinue all pMDIs, switching patients to dry powder inhalers (DPIs). However, a switch from pMDIs to DPIs may not be a clinically appropriate option for some patients; furthermore, the full lifecycle carbon footprint and the overall environmental impact of different inhalers should be considered. An alternative is therefore to reformulate the current HFA pMDIs to use low-GWP propellants, such as 1,1-difluoroethane (HFA-152a). This article summarizes the various steps and challenges associated with this change, illustrated using data from the inhaled triple combination of beclomethasone dipropionate, formoterol fumarate, and glycopyrronium bromide, a complex formulation of three molecules in a solution that contains liquid-phase propellant.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2024.0023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

The chlorofluorocarbons (CFCs) that were used as propellants in early pressurized metered-dose inhalers (pMDIs) had substantial ozone-depleting potential. Following the Montreal Protocol in 1987, the manufacture of a range of ozone-depleting substances, including CFCs, was gradually phased out, which required the propellants used in pMDIs to be replaced. Current pMDIs use hydrofluoroalkanes (HFAs) as propellants, such as 1,1,1,2-tetrafluoroethane (HFA-134a). Although these HFAs have no ozone-depleting potential, they have a high global warming potential (GWP), and consequently, their use is being phased down. One option for the discontinuation of HFA use in inhalers would be to discontinue all pMDIs, switching patients to dry powder inhalers (DPIs). However, a switch from pMDIs to DPIs may not be a clinically appropriate option for some patients; furthermore, the full lifecycle carbon footprint and the overall environmental impact of different inhalers should be considered. An alternative is therefore to reformulate the current HFA pMDIs to use low-GWP propellants, such as 1,1-difluoroethane (HFA-152a). This article summarizes the various steps and challenges associated with this change, illustrated using data from the inhaled triple combination of beclomethasone dipropionate, formoterol fumarate, and glycopyrronium bromide, a complex formulation of three molecules in a solution that contains liquid-phase propellant.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新配制加压计量吸入器以减少其环境影响所面临的制药、临床和监管挑战。
在早期的加压计量吸入器(pMDIs)中用作推进剂的氯氟化碳(CFCs)具有很大的臭氧消耗潜能。1987 年《蒙特利尔议定书》签署后,包括氯氟化碳在内的一系列消耗臭氧层物质的生产被逐步淘汰,这就要求更换计量吸入器中使用的推进剂。目前的计量吸入器使用氢氟烷烃(HFAs)作为推进剂,如 1,1,1,2-四氟乙烷(HFA-134a)。虽然这些氢氟烷烃不具有臭氧消耗潜能值,但它们具有很高的全球升温潜能值(GWP),因此正在逐步减少其使用。停止在吸入器中使用氢氟烷烃的一种方法是停止使用所有 pMDIs,让患者改用干粉吸入器 (DPI)。然而,从 pMDIs 转为 DPIs 可能对某些患者来说并不是一个临床上合适的选择;此外,还应该考虑不同吸入器的整个生命周期碳足迹和对环境的总体影响。因此,一种替代方案是重新配制当前的氢氟烷烃 pMDIs,以使用低全球升温潜能值推进剂,如 1,1-二氟乙烷(HFA-152a)。本文总结了与这一改变相关的各种步骤和挑战,并使用二丙酸倍氯米松、富马酸福莫特罗和溴化甘珀罗铵三合一吸入剂的数据进行了说明,这是一种在含有液相推进剂的溶液中含有三种分子的复杂配方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
2.90%
发文量
34
审稿时长
>12 weeks
期刊介绍: Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient. Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes: Pulmonary drug delivery Airway reactivity and asthma treatment Inhalation of particles and gases in the respiratory tract Toxic effects of inhaled agents Aerosols as tools for studying basic physiologic phenomena.
期刊最新文献
In Vitro Comparison of Inspiration-Synchronized and Continuous Vibrating Mesh Nebulizer During Adult Invasive Mechanical Ventilation. Prospects of Inhalable Formulations of Conventionally Administered Repurposed Drugs for Adjunctive Treatment of Drug-Resistant Tuberculosis: Supporting Evidence from Clinical Trials and Cohort Studies. Scale-Up and Postapproval Changes in Orally Inhaled Drug Products: Scientific and Regulatory Considerations. Assessing Human Lung Pharmacokinetics Using Exhaled Breath Particles. Demographic and Asthma-Related Characteristics of Asthmatics Using Pressurized Metered Dose Inhalers and Dry Powder Inhalers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1