Mesut Parlak, Ziad Joha, Fatih Yulak, Ali Sefa Mendil, Yaşar Taştemur
{"title":"Lycopene induces antiproliferative effects through apoptosis, autophagy, and oxidative DNA damage in the HeLa cells.","authors":"Mesut Parlak, Ziad Joha, Fatih Yulak, Ali Sefa Mendil, Yaşar Taştemur","doi":"10.1080/10799893.2024.2426516","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study explores the role of apoptosis, autophagy, and oxidative DNA damage in influencing the cytotoxic impact of lycopene on HeLa cells.</p><p><strong>Material and methods: </strong>Cell viability following exposure to varying lycopene concentrations was determined using an XTT assay. ELISA measured key cell death proteins (Bax, BCL-2, etc.), while immunofluorescence staining visualized LC3β (autophagy) and 8-oxo-dG (DNA damage).</p><p><strong>Results: </strong>Lycopene significantly killed HeLa cells in a dose-dependent way (IC50 = 10 μM). Subsequent examinations conducted with the IC50 dose of lycopene demonstrated a notable elevation in the expression levels of apoptotic proteins, such as cleaved caspase 3, cleaved PARP, and Bax (<i>p</i> < 0.001). Additionally, treatment with this substance led to an increase in the levels of 8-oxo-dG (<i>p</i> < 0.001), a widely acknowledged biomarker indicative of oxidative DNA damage. Furthermore, a significant rise (<i>p</i> < 0.05) in LC3β protein levels, a well-established indicator of autophagy activation, was noted.</p><p><strong>Conclusion: </strong>This study suggests lycopene's potential to fight cervical cancer by triggering programmed cell death (apoptosis) and cellular self-digestion (autophagy). These findings highlight lycopene as a promising candidate for future cervical cancer treatments.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"115-121"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2024.2426516","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study explores the role of apoptosis, autophagy, and oxidative DNA damage in influencing the cytotoxic impact of lycopene on HeLa cells.
Material and methods: Cell viability following exposure to varying lycopene concentrations was determined using an XTT assay. ELISA measured key cell death proteins (Bax, BCL-2, etc.), while immunofluorescence staining visualized LC3β (autophagy) and 8-oxo-dG (DNA damage).
Results: Lycopene significantly killed HeLa cells in a dose-dependent way (IC50 = 10 μM). Subsequent examinations conducted with the IC50 dose of lycopene demonstrated a notable elevation in the expression levels of apoptotic proteins, such as cleaved caspase 3, cleaved PARP, and Bax (p < 0.001). Additionally, treatment with this substance led to an increase in the levels of 8-oxo-dG (p < 0.001), a widely acknowledged biomarker indicative of oxidative DNA damage. Furthermore, a significant rise (p < 0.05) in LC3β protein levels, a well-established indicator of autophagy activation, was noted.
Conclusion: This study suggests lycopene's potential to fight cervical cancer by triggering programmed cell death (apoptosis) and cellular self-digestion (autophagy). These findings highlight lycopene as a promising candidate for future cervical cancer treatments.
背景:本研究探讨了细胞凋亡、自噬和氧化 DNA 损伤在影响番茄红素对 HeLa 细胞的细胞毒性影响中的作用:使用 XTT 试验测定暴露于不同浓度番茄红素后的细胞活力。ELISA检测关键细胞死亡蛋白(Bax、BCL-2等),免疫荧光染色检测LC3β(自噬)和8-oxo-dG(DNA损伤):结果:番茄红素能以剂量依赖的方式(IC50 = 10 μM)明显杀死 HeLa 细胞。使用 IC50 剂量番茄红素进行的后续检测表明,凋亡蛋白(如裂解的 caspase 3、裂解的 PARP 和 Bax)的表达水平明显升高(p p p 结论):这项研究表明,番茄红素具有通过触发细胞程序性死亡(凋亡)和细胞自我消化(自噬)来对抗宫颈癌的潜力。这些发现凸显了番茄红素是未来治疗宫颈癌的一种有前途的候选物质。
期刊介绍:
Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services:
BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.