首页 > 最新文献

Journal of Receptors and Signal Transduction最新文献

英文 中文
MFAP2 promotes the malignant progression of gastric cancer via activating the PI3K/AKT signaling pathway.
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-25 DOI: 10.1080/10799893.2025.2480775
Peng Guo, Ting Dai, Xiaohu Jin, Hao Wu, Shengkui Qiu, Chong Tang, Shichun Feng

Gastric cancer (GC) is one of the major cancers of the digestive system, ranking fifth in both incidence and cancer-related mortality worldwide. However, the molecular mechanisms underlying the occurrence and progression of GC remain elusive. By analyzing differentially expressed genes (DEGs) using datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we identified that MFAP2 mRNA is significantly overexpressed in GC tissues, and higher MFAP2 expression is associated with poorer prognosis in GC patients. Gain- and loss-of-function experiments confirmed that MFAP2 promotes the proliferation of MKN45 using CCK8 assays and colony formation assays. Mechanistically, bioinformatics analysis revealed that MFAP2 could activate the PI3K/AKT signaling pathway, which was further validated by rescue experiments. Finally, we confirmed that MFAP2 also promotes the proliferation of GC cells in vivo by subcutaneous xenograft model in BABL/c mice. Our study provided new insights for the early diagnosis and precision treatment of GC.

{"title":"MFAP2 promotes the malignant progression of gastric cancer via activating the PI3K/AKT signaling pathway.","authors":"Peng Guo, Ting Dai, Xiaohu Jin, Hao Wu, Shengkui Qiu, Chong Tang, Shichun Feng","doi":"10.1080/10799893.2025.2480775","DOIUrl":"https://doi.org/10.1080/10799893.2025.2480775","url":null,"abstract":"<p><p>Gastric cancer (GC) is one of the major cancers of the digestive system, ranking fifth in both incidence and cancer-related mortality worldwide. However, the molecular mechanisms underlying the occurrence and progression of GC remain elusive. By analyzing differentially expressed genes (DEGs) using datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we identified that MFAP2 mRNA is significantly overexpressed in GC tissues, and higher MFAP2 expression is associated with poorer prognosis in GC patients. Gain- and loss-of-function experiments confirmed that MFAP2 promotes the proliferation of MKN45 using CCK8 assays and colony formation assays. Mechanistically, bioinformatics analysis revealed that MFAP2 could activate the PI3K/AKT signaling pathway, which was further validated by rescue experiments. Finally, we confirmed that MFAP2 also promotes the proliferation of GC cells <i>in vivo</i> by subcutaneous xenograft model in BABL/c mice. Our study provided new insights for the early diagnosis and precision treatment of GC.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"1-10"},"PeriodicalIF":2.6,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143700691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TPX2 knockdown mediates p53 activation to induce autophagy and apoptosis for anti-colorectal cancer effects.
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-21 DOI: 10.1080/10799893.2025.2470180
Yunfei Dong, Guixian Sheng, Wenbin Chen

Colorectal cancer (CRC) exhibits high morbidity and mortality worldwide. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) impacts various cancers; however, mechanism of TPX2 in CRC remains unclear. Xenograft nude mouse models were constructed by subcutaneous injection of HCT116 cells with sh-NC, sh-TPX2, OE-NC, and OE-TPX2 transfection. Following the test of tumor growth, immunohistochemistry and TUNEL staining were done. In vitro, HCT116, RKO, and SW480 cells were divided into sh-NC, sh-TPX2, and sh-TPX2 + 3-methyladenine (3-MA, autophagy inhibitor) groups. Further, sh-p53 and rapamycin (RA, autophagy agonist) were added in HCT116 cells. EdU staining, flow cytometry, transparent electron microscopy, and Western blot were performed. Comparing with sh-NC group, sh-TPX2 inhibited tumor growth and Ki67 expression, and increased LC3-II expression and apoptosis, whereas OE-TPX2 group presented an opposite trend. In vitro, HCT116 and RKO cells in sh-TPX2 group enhanced apoptosis and LC3 II/LC3 I expression, and inhibited proliferation and P62 expression, which were reversed after further 3-MA intervention. The above results were not found in SW480 cells. Moreover, compared to sh-TPX2 group, sh-TPX2 + RA group enhanced apoptosis and autophagy, and suppressed the proliferation of HCT116 cells, which were reversed following further sh-p53 intervention. Therefore, sh-TPX2 mediated p53 activation to induce autophagy for anti-CRC effects, providing new ideas for CRC treatment.

{"title":"TPX2 knockdown mediates p53 activation to induce autophagy and apoptosis for anti-colorectal cancer effects.","authors":"Yunfei Dong, Guixian Sheng, Wenbin Chen","doi":"10.1080/10799893.2025.2470180","DOIUrl":"https://doi.org/10.1080/10799893.2025.2470180","url":null,"abstract":"<p><p>Colorectal cancer (CRC) exhibits high morbidity and mortality worldwide. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) impacts various cancers; however, mechanism of TPX2 in CRC remains unclear. Xenograft nude mouse models were constructed by subcutaneous injection of HCT116 cells with sh-NC, sh-TPX2, OE-NC, and OE-TPX2 transfection. Following the test of tumor growth, immunohistochemistry and TUNEL staining were done. <i>In vitro</i>, HCT116, RKO, and SW480 cells were divided into sh-NC, sh-TPX2, and sh-TPX2 + 3-methyladenine (3-MA, autophagy inhibitor) groups. Further, sh-p53 and rapamycin (RA, autophagy agonist) were added in HCT116 cells. EdU staining, flow cytometry, transparent electron microscopy, and Western blot were performed. Comparing with sh-NC group, sh-TPX2 inhibited tumor growth and Ki67 expression, and increased LC3-II expression and apoptosis, whereas OE-TPX2 group presented an opposite trend. <i>In vitro</i>, HCT116 and RKO cells in sh-TPX2 group enhanced apoptosis and LC3 II/LC3 I expression, and inhibited proliferation and P62 expression, which were reversed after further 3-MA intervention. The above results were not found in SW480 cells. Moreover, compared to sh-TPX2 group, sh-TPX2 + RA group enhanced apoptosis and autophagy, and suppressed the proliferation of HCT116 cells, which were reversed following further sh-p53 intervention. Therefore, sh-TPX2 mediated p53 activation to induce autophagy for anti-CRC effects, providing new ideas for CRC treatment.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"1-13"},"PeriodicalIF":2.6,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143674034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of senescent associated secretory phenotype on glucose homeostasis in C2C12 muscle cells: insights into potential p38 inhibitor interventions.
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-07 DOI: 10.1080/10799893.2025.2475441
Karan S Rana, Mandeep K Marwah, Farah N S Raja, Irundika Dias, Yukta Sameer Hindalekar, Mohamad Anas Al Tahan, James E Brown, Srikanth Bellary

Increased accumulation of senescent cells with aging is associated with reduced ability of insulin-target tissues to utilize glucose, resulting in increased insulin resistance and glucotoxicity. We investigated the role of the senescent-associated secretory phenotype (SASP) within C2C12, skeletal muscle cells on glucose homeostasis and if such effects could be reduced by blocking pro-inflammatory pathways. C2C12 myotubes were treated with 40% conditioned media from senescent fibroblasts. Indirect glucose uptake and glycogen content were measured. The effect of SASP on the generation of reactive oxygen species [1] and mitochondrial function was also measured. The experiments above were repeated with a p38 inhibitor. 40% SASP treatment significantly decreased glucose utilization and glycogen storage within myotubes (p < 0.0001). 40% SASP was successful in inducing oxidative stress and increased mitochondrial density, whilst reducing membrane potential following 48 h of incubation (p < 0.0001) and blocking NF-κβ, restored glucose utilization (p < 0.01) despite the presence of SASP. Co-incubation of 40% SASP with an NF-κβ inhibitor eliminates excessive ROS production and restores mitochondrial activity to levels comparable to control treatment (p < 0.0001). This study shows changes in glucose homeostasis in senescent cells is mediated through SASP, and interventions aimed at mitigating pro-inflammatory pathways can potentially improve insulin resistance.

{"title":"The influence of senescent associated secretory phenotype on glucose homeostasis in C2C12 muscle cells: insights into potential p38 inhibitor interventions.","authors":"Karan S Rana, Mandeep K Marwah, Farah N S Raja, Irundika Dias, Yukta Sameer Hindalekar, Mohamad Anas Al Tahan, James E Brown, Srikanth Bellary","doi":"10.1080/10799893.2025.2475441","DOIUrl":"https://doi.org/10.1080/10799893.2025.2475441","url":null,"abstract":"<p><p>Increased accumulation of senescent cells with aging is associated with reduced ability of insulin-target tissues to utilize glucose, resulting in increased insulin resistance and glucotoxicity. We investigated the role of the senescent-associated secretory phenotype (SASP) within C2C12, skeletal muscle cells on glucose homeostasis and if such effects could be reduced by blocking pro-inflammatory pathways. C2C12 myotubes were treated with 40% conditioned media from senescent fibroblasts. Indirect glucose uptake and glycogen content were measured. The effect of SASP on the generation of reactive oxygen species [1] and mitochondrial function was also measured. The experiments above were repeated with a p38 inhibitor. 40% SASP treatment significantly decreased glucose utilization and glycogen storage within myotubes (<i>p</i> < 0.0001). 40% SASP was successful in inducing oxidative stress and increased mitochondrial density, whilst reducing membrane potential following 48 h of incubation (<i>p</i> < 0.0001) and blocking NF-κβ, restored glucose utilization (<i>p</i> < 0.01) despite the presence of SASP. Co-incubation of 40% SASP with an NF-κβ inhibitor eliminates excessive ROS production and restores mitochondrial activity to levels comparable to control treatment (<i>p</i> < 0.0001). This study shows changes in glucose homeostasis in senescent cells is mediated through SASP, and interventions aimed at mitigating pro-inflammatory pathways can potentially improve insulin resistance.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"1-10"},"PeriodicalIF":2.6,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FBXL14 inhibits foam cell formation and atherosclerosis plaque progression by activating the NRF2 signal axis through ubiquitination of DUSP6.
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-07 DOI: 10.1080/10799893.2025.2466689
Wenjie Luo, Yubin Chen, Cheng Fang, Hui Shi, Fanyan Luo

Objectives: Atherosclerosis is characterized by persistent inflammatory condition, leading to various cardiovascular complications. Foam cell formation, resulting from macrophage uptake of oxidized low-density lipoprotein (ox-LDL), contributes significantly to atherosclerosis progression. This study was designed to investigate the involvement of bispecific phosphatase-6 (DUSP6) and its potential regulatory mechanisms in foam cell formation and atherosclerosis.

Methods: We employed THP-1 cells to induce foam cell formation. The lipid droplet accumulation, cholesterol content, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were evaluated using Oil Red O staining, cholesterol assay, ELISA, and qRT-PCR techniques. We investigated DUSP6 ubiquitination via immunoprecipitation and western blot (WB) analysis. A bioinformatics approach identified FBXL14 as a potential E3 ligase involved in DUSP6 ubiquitination, further confirmed by siRNA and overexpression experiments. The impact of FBXL14 on the NRF2 signaling pathway was assessed using WB analysis.

Results: DUSP6 interference suppressed foam cell formation and inflammatory factor secretion. Upon ox-LDL treatment, DUSP6 underwent deubiquitylation, with FBXL14 emerging as the candidate E3 ligase. FBXL14 overexpression induced DUSP6 ubiquitination, leading to the NRF2 signaling pathway activation. It counteracted with DUSP6 overexpression on foam cell formation and inflammation. In ApoE-/- mice, sh-DUSP6 adenovirus injection mitigated atherosclerotic lesion progression and improved the lipid profile, with increased the proteins expression of NQO1, HO-1, and NRF2 in aortic tissue.

Conclusion: DUSP6 and FBXL14 play vital roles in modulating foam cell formation and inflammatory responses in atherosclerosis. Targeting these molecules could offer therapeutic potential in attenuating atherosclerosis-related complications.

Clinical trial number: Not applicable.

{"title":"FBXL14 inhibits foam cell formation and atherosclerosis plaque progression by activating the NRF2 signal axis through ubiquitination of DUSP6.","authors":"Wenjie Luo, Yubin Chen, Cheng Fang, Hui Shi, Fanyan Luo","doi":"10.1080/10799893.2025.2466689","DOIUrl":"https://doi.org/10.1080/10799893.2025.2466689","url":null,"abstract":"<p><strong>Objectives: </strong>Atherosclerosis is characterized by persistent inflammatory condition, leading to various cardiovascular complications. Foam cell formation, resulting from macrophage uptake of oxidized low-density lipoprotein (ox-LDL), contributes significantly to atherosclerosis progression. This study was designed to investigate the involvement of bispecific phosphatase-6 (DUSP6) and its potential regulatory mechanisms in foam cell formation and atherosclerosis.</p><p><strong>Methods: </strong>We employed THP-1 cells to induce foam cell formation. The lipid droplet accumulation, cholesterol content, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were evaluated using Oil Red O staining, cholesterol assay, ELISA, and qRT-PCR techniques. We investigated DUSP6 ubiquitination via immunoprecipitation and western blot (WB) analysis. A bioinformatics approach identified FBXL14 as a potential E3 ligase involved in DUSP6 ubiquitination, further confirmed by siRNA and overexpression experiments. The impact of FBXL14 on the NRF2 signaling pathway was assessed using WB analysis.</p><p><strong>Results: </strong>DUSP6 interference suppressed foam cell formation and inflammatory factor secretion. Upon ox-LDL treatment, DUSP6 underwent deubiquitylation, with FBXL14 emerging as the candidate E3 ligase. FBXL14 overexpression induced DUSP6 ubiquitination, leading to the NRF2 signaling pathway activation. It counteracted with DUSP6 overexpression on foam cell formation and inflammation. In ApoE-/- mice, sh-DUSP6 adenovirus injection mitigated atherosclerotic lesion progression and improved the lipid profile, with increased the proteins expression of NQO1, HO-1, and NRF2 in aortic tissue.</p><p><strong>Conclusion: </strong>DUSP6 and FBXL14 play vital roles in modulating foam cell formation and inflammatory responses in atherosclerosis. Targeting these molecules could offer therapeutic potential in attenuating atherosclerosis-related complications.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"1-11"},"PeriodicalIF":2.6,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influencing hair regrowth with EGCG by targeting glycogen synthase kinase-3β activity: a molecular dynamics study.
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.1080/10799893.2025.2465240
Hamid Raza Moqaddasi, Anshul Singh, Shoma Mukherjee, Fatima Rezai, Arti Gupta, Saurabh Srivastava, Sathvik Belagodu Sridhar, Irfan Ahmad, Vivek Dhar Dwivedi, Sandeep Kumar

Hair follicle growth process through several well-organized stages with specific input by several signaling pathways including Wnt/β-catenin and Sonic Hedgehog with GSK3β in this process. As such, this research focus on investigating the efficacy of molecules that are able to inhibit GSK3β action in inducing hair regrowth. Applying computational techniques, three compounds NMN, Resveratrol and EGCG were analyzed for their GSK3β inhibition. It was established that EGCG has the highest values of molecular docking scores and, in the case of the stability criteria such as RMSD and RMSF, presented the most stable dynamic simulation. EGCG has shown considerable TEMPORAL STABILITY with GSK3β in the complex, because over a period of 200 nanoseconds the molecules remained bound through hydrogen bonds and hydrophobic contacts. As confirmed by PCA, the largest conformational changes in GSK3β suggest significant inhibitory interaction. Out of all the studied compounds, EGCG turns out to be the most potent GSK3β inhibitor for hair regrowth purposes. The result obtained from the molecular dynamics simulation indicates that EGCG might exert a favorable impact to extract signaling pathways related with hair follicle cycling which is a significant objective. These outcome sets the phase for further experimental testing to discover the potential of EGCG in the treatment of alopecia.

{"title":"Influencing hair regrowth with EGCG by targeting glycogen synthase kinase-3β activity: a molecular dynamics study.","authors":"Hamid Raza Moqaddasi, Anshul Singh, Shoma Mukherjee, Fatima Rezai, Arti Gupta, Saurabh Srivastava, Sathvik Belagodu Sridhar, Irfan Ahmad, Vivek Dhar Dwivedi, Sandeep Kumar","doi":"10.1080/10799893.2025.2465240","DOIUrl":"https://doi.org/10.1080/10799893.2025.2465240","url":null,"abstract":"<p><p>Hair follicle growth process through several well-organized stages with specific input by several signaling pathways including Wnt/β-catenin and Sonic Hedgehog with GSK3β in this process. As such, this research focus on investigating the efficacy of molecules that are able to inhibit GSK3β action in inducing hair regrowth. Applying computational techniques, three compounds NMN, Resveratrol and EGCG were analyzed for their GSK3β inhibition. It was established that EGCG has the highest values of molecular docking scores and, in the case of the stability criteria such as RMSD and RMSF, presented the most stable dynamic simulation. EGCG has shown considerable TEMPORAL STABILITY with GSK3β in the complex, because over a period of 200 nanoseconds the molecules remained bound through hydrogen bonds and hydrophobic contacts. As confirmed by PCA, the largest conformational changes in GSK3β suggest significant inhibitory interaction. Out of all the studied compounds, EGCG turns out to be the most potent GSK3β inhibitor for hair regrowth purposes. The result obtained from the molecular dynamics simulation indicates that EGCG might exert a favorable impact to extract signaling pathways related with hair follicle cycling which is a significant objective. These outcome sets the phase for further experimental testing to discover the potential of EGCG in the treatment of alopecia.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"1-12"},"PeriodicalIF":2.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Focusing on Keap1, IKKβ, and Bcl2 proteins: predicted targets of stigmasterol in neurodegeneration.
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-13 DOI: 10.1080/10799893.2025.2465243
Manoj Soni, Awadhesh Kumar, Rakesh Kumar, Mehak Dangi, Ajit Kumar, Vijay Kumar

Oxidative stress, driven by excess ROS, damages lipids, proteins, and DNA, leading to neuronal apoptosis and inflammation, a key factor in neurodegenerative diseases. This study explored stigmasterol, a bioactive phytosterol, with neuroprotective potential, revealing strong docking interactions, especially with Keap1 (binding energy of -11.62 Kcal/mol). Stigmasterol formed two hydrogen bonds with Ile258 and Val305 in Keap1, suggesting it could disrupt Keap1-Nrf2 interactions, potentially activating antioxidant responses by promoting Nrf2 translocation to the nucleus. In the Bcl2-stigmasterol complex, which exhibited a binding energy of -8.41 Kcal/mol, hydrophobic interactions with residues Ser50, Gln52, and Leu185 stabilized the complex, indicating stigmasterol's role in inhibiting apoptosis by strengthening of Bcl2 mediated inhibition of pro-apoptotic factors like Bax. Furthermore, the IKKβ-stigmasterol complex displayed a hydrogen bond between Asp385 residue and stigmasterol (2.83 Å), with a binding energy of -8.33 Kcal/mol, suggested that stigmasterol may regulate inflammation by stabilizing IKKβ, thereby preventing NF-κB translocation and reducing inflammation. Molecular dynamics simulations confirmed the stability of stigmasterol's interactions, especially with Keap1, which showed low RMSD values and consistent hydrogen bonding. RMSF and Rg analyses indicated that stigmasterol had stabilizing effects on Bcl2 and IKKβ. These results underscore stigmasterol's potential for neuroprotection through antioxidant and anti-inflammatory actions.

{"title":"Focusing on Keap1, IKKβ, and Bcl2 proteins: predicted targets of stigmasterol in neurodegeneration.","authors":"Manoj Soni, Awadhesh Kumar, Rakesh Kumar, Mehak Dangi, Ajit Kumar, Vijay Kumar","doi":"10.1080/10799893.2025.2465243","DOIUrl":"https://doi.org/10.1080/10799893.2025.2465243","url":null,"abstract":"<p><p>Oxidative stress, driven by excess ROS, damages lipids, proteins, and DNA, leading to neuronal apoptosis and inflammation, a key factor in neurodegenerative diseases. This study explored stigmasterol, a bioactive phytosterol, with neuroprotective potential, revealing strong docking interactions, especially with Keap1 (binding energy of -11.62 Kcal/mol). Stigmasterol formed two hydrogen bonds with Ile258 and Val305 in Keap1, suggesting it could disrupt Keap1-Nrf2 interactions, potentially activating antioxidant responses by promoting Nrf2 translocation to the nucleus. In the Bcl2-stigmasterol complex, which exhibited a binding energy of -8.41 Kcal/mol, hydrophobic interactions with residues Ser50, Gln52, and Leu185 stabilized the complex, indicating stigmasterol's role in inhibiting apoptosis by strengthening of Bcl2 mediated inhibition of pro-apoptotic factors like Bax. Furthermore, the IKKβ-stigmasterol complex displayed a hydrogen bond between Asp385 residue and stigmasterol (2.83 Å), with a binding energy of -8.33 Kcal/mol, suggested that stigmasterol may regulate inflammation by stabilizing IKKβ, thereby preventing NF-κB translocation and reducing inflammation. Molecular dynamics simulations confirmed the stability of stigmasterol's interactions, especially with Keap1, which showed low RMSD values and consistent hydrogen bonding. RMSF and Rg analyses indicated that stigmasterol had stabilizing effects on Bcl2 and IKKβ. These results underscore stigmasterol's potential for neuroprotection through antioxidant and anti-inflammatory actions.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"1-12"},"PeriodicalIF":2.6,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of sex hormone receptors and calcium handling proteins in the left ventricle of patients with heart failure.
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-12-30 DOI: 10.1080/10799893.2024.2444518
Shuwei Ning, Yuexin Yu, Mei He, Jingxian Han, Zhikun Guo

Heart failure (HF) is one of the leading causes of death from cardiovascular disease among adults worldwide. The role of sex hormone receptors in the pathogenesis of HF and their regulatory mechanisms remain unclear. This study focused on investigating the localization and expression of sex hormone receptors (ERα, ERβ, AR and PR) and calcium handling proteins (SERCA2a and Cav1.2) in the left ventricle (LV) tissues of patients with HF, and to investigate their interactions. The LV tissues of HF patients were collected, and the localization of sex hormone receptors and calcium handling proteins was detected by immunofluorescence and immunohistochemistry. Western blotting was performed to study the expression levels of sex hormone receptors and calcium handling proteins. The interactions between these proteins were identified by immunofluorescence co-location and immunoprecipitation respectively. Compared with the control group, the expression levels of sex hormone receptors and calcium handling proteins in HF patients were significantly decreased. There was co-localization and interaction between protein ERα and Cav1.2, protein AR and SERCA2a, respectively. In summary, sex hormone receptors may be involved in regulating the progression of HF by interacting with calcium handling proteins.

{"title":"Interaction of sex hormone receptors and calcium handling proteins in the left ventricle of patients with heart failure.","authors":"Shuwei Ning, Yuexin Yu, Mei He, Jingxian Han, Zhikun Guo","doi":"10.1080/10799893.2024.2444518","DOIUrl":"https://doi.org/10.1080/10799893.2024.2444518","url":null,"abstract":"<p><p>Heart failure (HF) is one of the leading causes of death from cardiovascular disease among adults worldwide. The role of sex hormone receptors in the pathogenesis of HF and their regulatory mechanisms remain unclear. This study focused on investigating the localization and expression of sex hormone receptors (ERα, ERβ, AR and PR) and calcium handling proteins (SERCA2a and Cav1.2) in the left ventricle (LV) tissues of patients with HF, and to investigate their interactions. The LV tissues of HF patients were collected, and the localization of sex hormone receptors and calcium handling proteins was detected by immunofluorescence and immunohistochemistry. Western blotting was performed to study the expression levels of sex hormone receptors and calcium handling proteins. The interactions between these proteins were identified by immunofluorescence co-location and immunoprecipitation respectively. Compared with the control group, the expression levels of sex hormone receptors and calcium handling proteins in HF patients were significantly decreased. There was co-localization and interaction between protein ERα and Cav1.2, protein AR and SERCA2a, respectively. In summary, sex hormone receptors may be involved in regulating the progression of HF by interacting with calcium handling proteins.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"45 1","pages":"34-41"},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated in silico and in vitro exploration using isolated pancreatic islets of C57BL/6J mice. 解码去甲肾上腺素和β-肾上腺素能受体亚型参与葡萄糖诱导的胰岛素分泌:利用C57BL/6J小鼠离体胰岛的集成硅和体外探索。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-12-27 DOI: 10.1080/10799893.2024.2446393
Vijayalakshmi Gangadhara, Asha Abraham

Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation. We constructed high-quality 3D models for murine β1-AR, β2-AR, and β3-AR using Phyre2 and Ramachandran plot analysis. Molecular docking revealed NE's strong binding affinity for all three β-AR subtypes through favorable docking scores and hydrogen bond formations. We evaluated the physiological impact of NE on glucose-induced insulin secretion via β-ARs under physiological and elevated glucose conditions using pancreatic islets from C57BL/6J mice. At physiological glucose levels, NE did not significantly increase insulin secretion. However, higher NE concentrations suppressed insulin release at elevated glucose. The β3-AR agonist CL316243 significantly increased (p < 0.01), insulin secretion under normal and hyperglycemic conditions, while the β3-AR antagonist L748337 substantially decreased (p < 0.01)insulin release under normal glucose, confirming their interactions through docking studies. The nonselective β-AR antagonist propranolol significantly decreased (p < 0.01)insulin secretion, suggesting alternative interactions with β1-AR and β2-AR despite lacking hydrogen bonds. Our study enhances the understanding of NE's role in modulating insulin secretion and underscores the significance of β-ARs, especially β3-AR, in its regulation, providing valuable insights for potential therapeutic interventions targeting these receptors in metabolic disorders.

调节胰腺β细胞产生胰岛素对维持代谢平衡至关重要。先前的研究发现,在胰岛素分泌受损的代谢综合征小鼠中,去甲肾上腺素(NE)等神经递质水平升高。鉴于β-肾上腺素能受体(β-ARs)对糖尿病和肥胖的治疗潜力,以及缺乏小鼠β-ARs的结构数据,我们旨在构建和验证3D模型,以研究它们在胰岛素分泌调节中的作用。我们利用Phyre2和Ramachandran图分析构建了高质量的小鼠β1-AR、β2-AR和β3-AR三维模型。通过良好的对接得分和氢键形成,分子对接揭示了NE对所有三种β-AR亚型的强结合亲和力。我们利用C57BL/6J小鼠的胰岛,在生理和血糖升高的条件下,评估了NE对葡萄糖诱导的胰岛素分泌的生理影响。在生理葡萄糖水平下,NE没有显著增加胰岛素分泌。然而,较高的NE浓度抑制血糖升高时胰岛素的释放。β3-AR激动剂CL316243显著升高(p < 0.05)
{"title":"Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated <i>in silico</i> and <i>in vitro</i> exploration using isolated pancreatic islets of C57BL/6J mice.","authors":"Vijayalakshmi Gangadhara, Asha Abraham","doi":"10.1080/10799893.2024.2446393","DOIUrl":"10.1080/10799893.2024.2446393","url":null,"abstract":"<p><p>Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation. We constructed high-quality 3D models for murine β1-AR, β2-AR, and β3-AR using Phyre2 and Ramachandran plot analysis. Molecular docking revealed NE's strong binding affinity for all three β-AR subtypes through favorable docking scores and hydrogen bond formations. We evaluated the physiological impact of NE on glucose-induced insulin secretion <i>via</i> β-ARs under physiological and elevated glucose conditions using pancreatic islets from C57BL/6J mice. At physiological glucose levels, NE did not significantly increase insulin secretion. However, higher NE concentrations suppressed insulin release at elevated glucose. The β3-AR agonist CL316243 significantly increased (<i>p</i> < 0.01), insulin secretion under normal and hyperglycemic conditions, while the β3-AR antagonist L748337 substantially decreased (<i>p</i> < 0.01)insulin release under normal glucose, confirming their interactions through docking studies. The nonselective β-AR antagonist propranolol significantly decreased (<i>p</i> < 0.01)insulin secretion, suggesting alternative interactions with β1-AR and β2-AR despite lacking hydrogen bonds. Our study enhances the understanding of NE's role in modulating insulin secretion and underscores the significance of β-ARs, especially β3-AR, in its regulation, providing valuable insights for potential therapeutic interventions targeting these receptors in metabolic disorders.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"42-54"},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bortezomib suppresses TGF-β1-mediated LOXL4 reduction through the inhibition of MEK/ERK pathways in MDA-MB-231 cells.
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-01-25 DOI: 10.1080/10799893.2025.2455594
Tetsuro Kamiya, Kana Ishii, Kiyomi Ozawa, Hirokazu Hara

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression. In this study, we also investigated how TGF-β1 decreases LOXL4 expression. TGF-β1-induced intracellular reactive oxygen species (ROS) played a role in LOXL4 protein expression but had no effect on LOXL4 mRNA levels. The proteasomal inhibitor, bortezomib, significantly suppressed TGF-β1-mediated LOXL4 reduction, which indicated that TGF-β1 facilitates LOXL4 proteasomal degradation. Furthermore, bortezomib inhibited TGF-β1-induced MEK/ERK pathways which are involved in LOXL4 reduction and TGF-β1-mediated cell migration. Finally, we also determined the potential role of N-glycosylation in LOXL4 secretion. We found that the dysregulation of N-glycosylation may be involved in the reduction in LOXL4 secretion. Overall, bortezomib is expected to inhibit TNBC progression by inhibiting both the MEK/ERK and proteasomal degradation pathways, which regulate LOXL4 expression.

{"title":"Bortezomib suppresses TGF-β1-mediated LOXL4 reduction through the inhibition of MEK/ERK pathways in MDA-MB-231 cells.","authors":"Tetsuro Kamiya, Kana Ishii, Kiyomi Ozawa, Hirokazu Hara","doi":"10.1080/10799893.2025.2455594","DOIUrl":"10.1080/10799893.2025.2455594","url":null,"abstract":"<p><p>Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression. In this study, we also investigated how TGF-β1 decreases LOXL4 expression. TGF-β1-induced intracellular reactive oxygen species (ROS) played a role in LOXL4 protein expression but had no effect on LOXL4 mRNA levels. The proteasomal inhibitor, bortezomib, significantly suppressed TGF-β1-mediated LOXL4 reduction, which indicated that TGF-β1 facilitates LOXL4 proteasomal degradation. Furthermore, bortezomib inhibited TGF-β1-induced MEK/ERK pathways which are involved in LOXL4 reduction and TGF-β1-mediated cell migration. Finally, we also determined the potential role of N-glycosylation in LOXL4 secretion. We found that the dysregulation of N-glycosylation may be involved in the reduction in LOXL4 secretion. Overall, bortezomib is expected to inhibit TNBC progression by inhibiting both the MEK/ERK and proteasomal degradation pathways, which regulate LOXL4 expression.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"73-82"},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel therapeutic approaches targeting 5-HT7 receptors outside the central nervous system. 靶向中枢神经系统外5-HT7受体的新治疗方法。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-01-04 DOI: 10.1080/10799893.2024.2446401
Melis Kilic, Zeynep Karakoy, Hamza Halici, Elif Cadirci, Zekai Halici

Serotonin (5-HT) is a neurotransmitter found throughout the human body that regulates many physiological events arising from the brain and central nervous system (CNS), such as sleep and appetite. However, it has many other functions in systems outside. In addition to the routine expression of 5-HT7 receptors in CNS regions, such as the pituitary gland, spinal cord, and hippocampus, many studies have reported the expression of these receptors in pathological conditions outside. The role of 5-HT7 receptors outside the CNS has been attracting increased attention in recent years. This review highlights the fact that 5-HT7 receptors are associated with diseases and systems beyond the CNS increasing or decreasing in response to cellular changes. Clinical, basic, in vivo and in vitro studies to date are described, but more research is needed to better understand the role of 5-HT7 receptors outside the CNS.

5-羟色胺(5-HT)是一种遍布人体的神经递质,调节大脑和中枢神经系统(CNS)产生的许多生理事件,如睡眠和食欲。但是,它在外部系统中具有许多其他功能。除了5-HT7受体在脑垂体、脊髓和海马等中枢神经系统区域的常规表达外,许多研究报道了这些受体在病理状态下的表达。近年来,5-HT7受体在CNS外的作用引起了越来越多的关注。这篇综述强调了一个事实,即5-HT7受体与疾病和中枢神经系统以外的系统有关,随着细胞变化而增加或减少。迄今为止的临床、基础、体内和体外研究都有描述,但需要更多的研究来更好地了解5-HT7受体在中枢神经系统外的作用。
{"title":"Novel therapeutic approaches targeting 5-HT7 receptors outside the central nervous system.","authors":"Melis Kilic, Zeynep Karakoy, Hamza Halici, Elif Cadirci, Zekai Halici","doi":"10.1080/10799893.2024.2446401","DOIUrl":"10.1080/10799893.2024.2446401","url":null,"abstract":"<p><p>Serotonin (5-HT) is a neurotransmitter found throughout the human body that regulates many physiological events arising from the brain and central nervous system (CNS), such as sleep and appetite. However, it has many other functions in systems outside. In addition to the routine expression of 5-HT7 receptors in CNS regions, such as the pituitary gland, spinal cord, and hippocampus, many studies have reported the expression of these receptors in pathological conditions outside. The role of 5-HT7 receptors outside the CNS has been attracting increased attention in recent years. This review highlights the fact that 5-HT7 receptors are associated with diseases and systems beyond the CNS increasing or decreasing in response to cellular changes. Clinical, basic, <i>in vivo</i> and <i>in vitro</i> studies to date are described, but more research is needed to better understand the role of 5-HT7 receptors outside the CNS.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"55-60"},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Receptors and Signal Transduction
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1