A first vocal repertoire characterization of long-finned pilot whales (Globicephala melas) in the Mediterranean Sea: a machine learning approach.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Royal Society Open Science Pub Date : 2024-11-06 eCollection Date: 2024-11-01 DOI:10.1098/rsos.231973
M Poupard, P Best, J P Morgan, G Pavan, H Glotin
{"title":"A first vocal repertoire characterization of long-finned pilot whales (<i>Globicephala melas</i>) in the Mediterranean Sea: a machine learning approach.","authors":"M Poupard, P Best, J P Morgan, G Pavan, H Glotin","doi":"10.1098/rsos.231973","DOIUrl":null,"url":null,"abstract":"<p><p>The acoustic repertoires of long-finned pilot whales (<i>Globicephala melas</i>) in the Mediterranean Sea are poorly understood. This study aims to create a catalogue of calls, analyse acoustic parameters, and propose a classification tree for future research. An acoustic database was compiled using recordings from the Alboran Sea, Gulf of Lion and Ligurian Sea (Western Mediterranean Basin) between 2008 and 2022, totalling 640 calls. Using a deep neural network, the calls were clustered based on frequency contour similarities, leading to the identification of 40 distinct call types defining the local population's vocal repertoire. These categories encompass pulsed calls with varied complexities, from simplistic to highly intricate structures comprising multiple elements and segments. This study marks the initial documentation of the vocal catalogue of long-finned pilot whales in the Mediterranean Sea. Subsequent research should delve deeper into this multifaceted communication system and explore its potential linkages with social structures.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 11","pages":"231973"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.231973","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The acoustic repertoires of long-finned pilot whales (Globicephala melas) in the Mediterranean Sea are poorly understood. This study aims to create a catalogue of calls, analyse acoustic parameters, and propose a classification tree for future research. An acoustic database was compiled using recordings from the Alboran Sea, Gulf of Lion and Ligurian Sea (Western Mediterranean Basin) between 2008 and 2022, totalling 640 calls. Using a deep neural network, the calls were clustered based on frequency contour similarities, leading to the identification of 40 distinct call types defining the local population's vocal repertoire. These categories encompass pulsed calls with varied complexities, from simplistic to highly intricate structures comprising multiple elements and segments. This study marks the initial documentation of the vocal catalogue of long-finned pilot whales in the Mediterranean Sea. Subsequent research should delve deeper into this multifaceted communication system and explore its potential linkages with social structures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
首次描述地中海长鳍领航鲸(Globicephala melas)的声带特征:一种机器学习方法。
人们对地中海长鳍领航鲸(Globicephala melas)的声学特征知之甚少。本研究旨在建立一个叫声目录,分析声学参数,并为未来研究提出一个分类树。研究人员利用 2008 年至 2022 年期间在阿尔博兰海、狮子湾和利古里亚海(西地中海盆地)采集的录音编制了一个声学数据库,共计 640 次鸣叫。利用深度神经网络,根据频率轮廓的相似性对这些叫声进行了聚类,从而确定了 40 种不同的叫声类型,这些类型定义了当地种群的声音曲目。这些类型包括复杂程度不同的脉冲式叫声,从简单到由多个元素和片段组成的高度复杂的结构。这项研究首次记录了地中海长鳍领航鲸的发声目录。后续研究应深入探讨这一多层面的交流系统,并探索其与社会结构的潜在联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
期刊最新文献
Data-driven Huntington's disease progression modelling and estimation of societal cost in the UK. How the pandemic affected psychological research. Molecular, spectroscopic and thermochemical characterization of C2Cl3, C2F3 and C2Br3 radicals and related species. Numerical simulation study on the force of overwintering foundation support structure of unsaturated seasonal permafrost under indoor experiments. Synthesis and biological evaluation of diclofenac acid derivatives as potential lipoxygenase and α-glucosidase inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1