{"title":"Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development.","authors":"Zhiyuan Han, An Chen, Zejian Li, Mengtian Zhang, Zhilong Wang, Lixue Yang, Runhua Gao, Yeyang Jia, Guanjun Ji, Zhoujie Lao, Xiao Xiao, Kehao Tao, Jing Gao, Wei Lv, Tianshuai Wang, Jinjin Li, Guangmin Zhou","doi":"10.1038/s41467-024-52550-9","DOIUrl":null,"url":null,"abstract":"<p><p>The practical development of Li | |S batteries is hindered by the slow kinetics of polysulfides conversion reactions during cycling. To circumvent this limitation, researchers suggested the use of transition metal-based electrocatalytic materials in the sulfur-based positive electrode. However, the atomic-level interactions among multiple electrocatalytic sites are not fully understood. Here, to improve the understanding of electrocatalytic sites, we propose a multi-view machine-learned framework to evaluate electrocatalyst features using limited datasets and intrinsic factors, such as corrected d orbital properties. Via physicochemical characterizations and theoretical calculations, we demonstrate that orbital coupling among sites induces shifts in band centers and alterations in the spin state, thus influencing interactions with polysulfides and resulting in diverse Li-S bond breaking and lithium migration barriers. Using a carbon-coated Fe/Co electrocatalyst (synthesized using recycled Li-ion battery electrodes as raw materials) at the positive electrode of a Li | |S pouch cell with high sulfur loading and lean electrolyte conditions, we report an initial specific energy of 436 Wh kg<sup>-1</sup> (whole mass of the cell) at 67 mA and 25 °C.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"8433"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52550-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The practical development of Li | |S batteries is hindered by the slow kinetics of polysulfides conversion reactions during cycling. To circumvent this limitation, researchers suggested the use of transition metal-based electrocatalytic materials in the sulfur-based positive electrode. However, the atomic-level interactions among multiple electrocatalytic sites are not fully understood. Here, to improve the understanding of electrocatalytic sites, we propose a multi-view machine-learned framework to evaluate electrocatalyst features using limited datasets and intrinsic factors, such as corrected d orbital properties. Via physicochemical characterizations and theoretical calculations, we demonstrate that orbital coupling among sites induces shifts in band centers and alterations in the spin state, thus influencing interactions with polysulfides and resulting in diverse Li-S bond breaking and lithium migration barriers. Using a carbon-coated Fe/Co electrocatalyst (synthesized using recycled Li-ion battery electrodes as raw materials) at the positive electrode of a Li | |S pouch cell with high sulfur loading and lean electrolyte conditions, we report an initial specific energy of 436 Wh kg-1 (whole mass of the cell) at 67 mA and 25 °C.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.