Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-29 DOI:10.1038/s41467-024-52550-9
Zhiyuan Han, An Chen, Zejian Li, Mengtian Zhang, Zhilong Wang, Lixue Yang, Runhua Gao, Yeyang Jia, Guanjun Ji, Zhoujie Lao, Xiao Xiao, Kehao Tao, Jing Gao, Wei Lv, Tianshuai Wang, Jinjin Li, Guangmin Zhou
{"title":"Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development.","authors":"Zhiyuan Han, An Chen, Zejian Li, Mengtian Zhang, Zhilong Wang, Lixue Yang, Runhua Gao, Yeyang Jia, Guanjun Ji, Zhoujie Lao, Xiao Xiao, Kehao Tao, Jing Gao, Wei Lv, Tianshuai Wang, Jinjin Li, Guangmin Zhou","doi":"10.1038/s41467-024-52550-9","DOIUrl":null,"url":null,"abstract":"<p><p>The practical development of Li | |S batteries is hindered by the slow kinetics of polysulfides conversion reactions during cycling. To circumvent this limitation, researchers suggested the use of transition metal-based electrocatalytic materials in the sulfur-based positive electrode. However, the atomic-level interactions among multiple electrocatalytic sites are not fully understood. Here, to improve the understanding of electrocatalytic sites, we propose a multi-view machine-learned framework to evaluate electrocatalyst features using limited datasets and intrinsic factors, such as corrected d orbital properties. Via physicochemical characterizations and theoretical calculations, we demonstrate that orbital coupling among sites induces shifts in band centers and alterations in the spin state, thus influencing interactions with polysulfides and resulting in diverse Li-S bond breaking and lithium migration barriers. Using a carbon-coated Fe/Co electrocatalyst (synthesized using recycled Li-ion battery electrodes as raw materials) at the positive electrode of a Li | |S pouch cell with high sulfur loading and lean electrolyte conditions, we report an initial specific energy of 436 Wh kg<sup>-1</sup> (whole mass of the cell) at 67 mA and 25 °C.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"8433"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52550-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The practical development of Li | |S batteries is hindered by the slow kinetics of polysulfides conversion reactions during cycling. To circumvent this limitation, researchers suggested the use of transition metal-based electrocatalytic materials in the sulfur-based positive electrode. However, the atomic-level interactions among multiple electrocatalytic sites are not fully understood. Here, to improve the understanding of electrocatalytic sites, we propose a multi-view machine-learned framework to evaluate electrocatalyst features using limited datasets and intrinsic factors, such as corrected d orbital properties. Via physicochemical characterizations and theoretical calculations, we demonstrate that orbital coupling among sites induces shifts in band centers and alterations in the spin state, thus influencing interactions with polysulfides and resulting in diverse Li-S bond breaking and lithium migration barriers. Using a carbon-coated Fe/Co electrocatalyst (synthesized using recycled Li-ion battery electrodes as raw materials) at the positive electrode of a Li | |S pouch cell with high sulfur loading and lean electrolyte conditions, we report an initial specific energy of 436 Wh kg-1 (whole mass of the cell) at 67 mA and 25 °C.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的电催化材料设计,促进高能锂硫电池的开发。
由于多硫化物在循环过程中的转化反应动力学缓慢,锂||S 电池的实际开发受到了阻碍。为了规避这一限制,研究人员建议在硫基正极中使用过渡金属电催化材料。然而,人们对多个电催化位点之间的原子级相互作用并不完全了解。在此,为了增进对电催化位点的了解,我们提出了一种多视角机器学习框架,利用有限的数据集和内在因素(如校正后的 d 轨道特性)来评估电催化剂的特征。通过物理化学表征和理论计算,我们证明了位点间的轨道耦合会引起带中心的移动和自旋态的改变,从而影响与多硫化物的相互作用,并导致不同的锂-S 键断裂和锂迁移障碍。在高硫负荷和贫电解质条件下,我们在锂离子电池袋电池的正极使用了碳包覆的 Fe/Co 电催化剂(以回收的锂离子电池电极为原料合成),结果表明,在 67 mA 和 25 °C 条件下,初始比能量为 436 Wh kg-1(电池的整质量)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
VLDLR mediates Semliki Forest virus neuroinvasion through the blood-cerebrospinal fluid barrier Modularity-based mathematical modeling of ligand inter-nanocluster connectivity for unraveling reversible stem cell regulation Chromosome architecture and low cohesion bias acrocentric chromosomes towards aneuploidy during mammalian meiosis Broadscale dampening of uncertainty adjustment in the aging brain An efficient multi-gram access in a two-step synthesis to soluble, nine-atomic, silylated silicon clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1