{"title":"Comparative transcriptomic analysis revealed potential mechanisms regulating the hypertrophy of goose pectoral muscles.","authors":"Xinyue Hu, Yali Liu, Bincheng Tang, Jiwei Hu, Hua He, Hehe Liu, Liang Li, Shenqiang Hu, Jiwen Wang","doi":"10.1016/j.psj.2024.104498","DOIUrl":null,"url":null,"abstract":"<p><p>Pectoral muscle development is an important economic trait. According to the different essence, muscle development can be divided into 2 processes: embryonic muscle fiber generation and postnatal muscle fiber hypertrophy, and postnatal muscle fiber hypertrophy has a greater impact on muscle development than the number of muscle fibers formed during the embryonic phase in poultry. However, the underlying mechanisms regulating the hypertrophy of goose pectoral muscles have not been elucidated. Therefore, the purpose of the present study was to conduct transcriptome sequencing in pectoral muscles of both Landes (LD) and Sichuan White (SW) geese at 6, 10, and 30 weeks of age to reveal the molecular mechanisms regulating pectoral muscle hypertrophy through intra-breed and inter-breed bioinformatics analyses. Phenotypically, the pectoral muscle weight/index of LD and SW geese increased from 6 to 30 weeks of age, and except for the pectoral muscle index at 10 weeks of age (P = 0.962), at the same age, the pectoral muscle weight/index of LD geese were significantly higher than that of SW geese (P < 0.05). In transcriptional regulation, intra-breed bioinformatics analysis identified 3331 genes whose expression levels were opposite to the trend of pectoral muscle hypertrophy both in LD and SW geese, and the 3331 genes were mainly enriched into abundant KEGG pathways related to lipid metabolism, proliferation/apoptosis, and immune response. Moreover, 23 genes (including SLC2A10, TNFRSF1A, PRKAA1, SLC27A4, ITGB2, THY1, RHOA, MYL10, ACTB, PRKCB, PIK3R2, RAC2, DMD, LATS2, YAP1, WWTR1, SMAD7, CTGF, FGF1, AXIN2, GLI2, ID2, and CCND2) who were enriched in 6 crosstalk pathways named viral myocarditis, insulin resistance, sphingolipid signaling pathway, hippo signaling pathway, chemokine signaling pathway, and leukocyte transendothelial migration were identified as the key candidate genes regulating the hypertrophy of goose pectoral muscles. In inter-breed bioinformatics analysis, abundant different expression genes (DEGs) related to lipid metabolism, immune response, and proliferation/apoptosis were identified between LD and SW geese too, and compared with SW geese, the expression level of MYL10 in LD geese was lower, while the expression levels of GLI2/CTGF/SMAD7 in LD geese were higher. These results suggested that the hypertrophy of goose pectoral muscles might be achieved through more lipid deposition and less leukocyte infiltration to promote the proliferation of cells within the muscles, and the low expression of MYL10 and high expressions of GLI2/CTGF/SMAD7 might the keys to induce the pectoral muscle hypertrophy of LD geese from 6 to 30 weeks of age over that of SW geese. All data the present study obtained will provide new insights into the molecular mechanisms regulating the hypertrophy of goose pectoral muscles.</p>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.psj.2024.104498","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Pectoral muscle development is an important economic trait. According to the different essence, muscle development can be divided into 2 processes: embryonic muscle fiber generation and postnatal muscle fiber hypertrophy, and postnatal muscle fiber hypertrophy has a greater impact on muscle development than the number of muscle fibers formed during the embryonic phase in poultry. However, the underlying mechanisms regulating the hypertrophy of goose pectoral muscles have not been elucidated. Therefore, the purpose of the present study was to conduct transcriptome sequencing in pectoral muscles of both Landes (LD) and Sichuan White (SW) geese at 6, 10, and 30 weeks of age to reveal the molecular mechanisms regulating pectoral muscle hypertrophy through intra-breed and inter-breed bioinformatics analyses. Phenotypically, the pectoral muscle weight/index of LD and SW geese increased from 6 to 30 weeks of age, and except for the pectoral muscle index at 10 weeks of age (P = 0.962), at the same age, the pectoral muscle weight/index of LD geese were significantly higher than that of SW geese (P < 0.05). In transcriptional regulation, intra-breed bioinformatics analysis identified 3331 genes whose expression levels were opposite to the trend of pectoral muscle hypertrophy both in LD and SW geese, and the 3331 genes were mainly enriched into abundant KEGG pathways related to lipid metabolism, proliferation/apoptosis, and immune response. Moreover, 23 genes (including SLC2A10, TNFRSF1A, PRKAA1, SLC27A4, ITGB2, THY1, RHOA, MYL10, ACTB, PRKCB, PIK3R2, RAC2, DMD, LATS2, YAP1, WWTR1, SMAD7, CTGF, FGF1, AXIN2, GLI2, ID2, and CCND2) who were enriched in 6 crosstalk pathways named viral myocarditis, insulin resistance, sphingolipid signaling pathway, hippo signaling pathway, chemokine signaling pathway, and leukocyte transendothelial migration were identified as the key candidate genes regulating the hypertrophy of goose pectoral muscles. In inter-breed bioinformatics analysis, abundant different expression genes (DEGs) related to lipid metabolism, immune response, and proliferation/apoptosis were identified between LD and SW geese too, and compared with SW geese, the expression level of MYL10 in LD geese was lower, while the expression levels of GLI2/CTGF/SMAD7 in LD geese were higher. These results suggested that the hypertrophy of goose pectoral muscles might be achieved through more lipid deposition and less leukocyte infiltration to promote the proliferation of cells within the muscles, and the low expression of MYL10 and high expressions of GLI2/CTGF/SMAD7 might the keys to induce the pectoral muscle hypertrophy of LD geese from 6 to 30 weeks of age over that of SW geese. All data the present study obtained will provide new insights into the molecular mechanisms regulating the hypertrophy of goose pectoral muscles.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.