Sudharaj Aryasree, Konrad Kandler, Natalie Benker, Adrian Walser, Anne Tipka, Maximillian Dollner, Petra Seibert, Bernadett Weinzierl
{"title":"Vertical Variability in morphology, chemistry and optical properties of the transported Saharan air layer measured from Cape Verde and the Caribbean.","authors":"Sudharaj Aryasree, Konrad Kandler, Natalie Benker, Adrian Walser, Anne Tipka, Maximillian Dollner, Petra Seibert, Bernadett Weinzierl","doi":"10.1098/rsos.231433","DOIUrl":null,"url":null,"abstract":"<p><p>The structural properties of the Saharan air layer (SAL) including chemical, morphological and optical properties were measured during the Saharan Aerosol Longrange TRansport and Aerosol Cloud interaction Experiment (SALTRACE- June/July 2013). Flight measurements were done from Cape Verde and the Caribbean. Changes happening with the chemical composition, mixing, shape and absorption of aerosol single particles (particle diameter range 0.5-3.0 µm) inside SAL during its transport are detailed. Dust-dominated SAL (relative number abundance >90%) and generally low mixing (<1% with sea-salt and sulphates) are observed at both locations. The change in shape (determined as aspect ratio (AR)) after transatlantic transport was statistically not significant. The iron oxide fraction, important for light absorption, contributed 6.0-6.8% to SAL dust. A lower amount of Fe oxides was observed in transported SAL, especially for the size range 0.5-1.5 µm. This reduction in Fe oxide content resulted in a 4% decrease (0.0046-0.0044) in dust imaginary refractive index and a 1% decrease in single scattering albedo (0.802-0.809) at 520 nm. Our work suggests including the size distribution of iron oxides and their particular behaviour in future experiment/model studies.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 11","pages":"231433"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.231433","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The structural properties of the Saharan air layer (SAL) including chemical, morphological and optical properties were measured during the Saharan Aerosol Longrange TRansport and Aerosol Cloud interaction Experiment (SALTRACE- June/July 2013). Flight measurements were done from Cape Verde and the Caribbean. Changes happening with the chemical composition, mixing, shape and absorption of aerosol single particles (particle diameter range 0.5-3.0 µm) inside SAL during its transport are detailed. Dust-dominated SAL (relative number abundance >90%) and generally low mixing (<1% with sea-salt and sulphates) are observed at both locations. The change in shape (determined as aspect ratio (AR)) after transatlantic transport was statistically not significant. The iron oxide fraction, important for light absorption, contributed 6.0-6.8% to SAL dust. A lower amount of Fe oxides was observed in transported SAL, especially for the size range 0.5-1.5 µm. This reduction in Fe oxide content resulted in a 4% decrease (0.0046-0.0044) in dust imaginary refractive index and a 1% decrease in single scattering albedo (0.802-0.809) at 520 nm. Our work suggests including the size distribution of iron oxides and their particular behaviour in future experiment/model studies.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.