Study on concentration distribution and detonation characteristics of typical multiphase fuel in orthogonal flow field

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE Aerospace Science and Technology Pub Date : 2024-10-31 DOI:10.1016/j.ast.2024.109704
{"title":"Study on concentration distribution and detonation characteristics of typical multiphase fuel in orthogonal flow field","authors":"","doi":"10.1016/j.ast.2024.109704","DOIUrl":null,"url":null,"abstract":"<div><div>The fuel concentration distribution and detonation characteristics are important for performance evaluation. In order to meet the needs of airdrop, launcher and missile, the transient flow and detonation process of multiphase fuel in orthogonal flow field are analyzed by experiments and numerical simulations. The dynamic detonation model of ethyl ether (EE), propylene oxide (PO) and tetrahydro dicyclopentadiene (JP-10) is built. The flow process, concentration distribution, overpressure, temperature and detonation wave structure of the three fuels are obtained. The results show that the falling velocity has obvious influence on the detonation process of fuel droplets. The falling velocity of 0.5 Ma makes the fuel concentration distribution more uniform and the energy output is better. The peak overpressure of EE, PO and JP-10 is 2.88 MPa, 3.21 MPa and 2.96 MPa respectively. The peak temperature is 2885 K, 3230 K and 2955 K respectively. The burn out rate increases by 8.5%, 8.1% and 13.7% respectively. JP-10 has higher sensitivity to falling velocity, and there are obvious secondary peaks of overpressure in low-speed state. PO has higher stability for falling velocity, and the scaled length of high temperature/pressure after detonation wave is 0.145 m·kg<sup>-1/3</sup>.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008332","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The fuel concentration distribution and detonation characteristics are important for performance evaluation. In order to meet the needs of airdrop, launcher and missile, the transient flow and detonation process of multiphase fuel in orthogonal flow field are analyzed by experiments and numerical simulations. The dynamic detonation model of ethyl ether (EE), propylene oxide (PO) and tetrahydro dicyclopentadiene (JP-10) is built. The flow process, concentration distribution, overpressure, temperature and detonation wave structure of the three fuels are obtained. The results show that the falling velocity has obvious influence on the detonation process of fuel droplets. The falling velocity of 0.5 Ma makes the fuel concentration distribution more uniform and the energy output is better. The peak overpressure of EE, PO and JP-10 is 2.88 MPa, 3.21 MPa and 2.96 MPa respectively. The peak temperature is 2885 K, 3230 K and 2955 K respectively. The burn out rate increases by 8.5%, 8.1% and 13.7% respectively. JP-10 has higher sensitivity to falling velocity, and there are obvious secondary peaks of overpressure in low-speed state. PO has higher stability for falling velocity, and the scaled length of high temperature/pressure after detonation wave is 0.145 m·kg-1/3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正交流场中典型多相燃料的浓度分布和爆炸特性研究
燃料浓度分布和爆炸特性对性能评估非常重要。为了满足空投、发射和导弹的需要,通过实验和数值模拟分析了多相燃料在正交流场中的瞬态流动和起爆过程。建立了乙醚(EE)、环氧丙烷(PO)和四氢双环戊二烯(JP-10)的动态引爆模型。得到了三种燃料的流动过程、浓度分布、过压、温度和爆轰波结构。结果表明,下落速度对燃料液滴的起爆过程有明显影响。0.5 Ma 的下降速度使燃料浓度分布更均匀,能量输出更好。EE、PO 和 JP-10 的峰值超压分别为 2.88 MPa、3.21 MPa 和 2.96 MPa。峰值温度分别为 2885 K、3230 K 和 2955 K。烧损率分别增加了 8.5%、8.1% 和 13.7%。JP-10 对下降速度的敏感性较高,在低速状态下有明显的次生超压峰。PO 对下降速度的稳定性较高,爆炸后高温/高压波的比例长度为 0.145 m-kg-1/3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
期刊最新文献
Experimental study on loss and flow mechanism of variable stator vanes in high-pressure compressor with bleed Prediction of pressure distribution and aerodynamic coefficients for a variable-sweep wing Experimental and numerical investigations into cold flow characteristics of multiple micro-mixing jets for hydrogen-rich gas turbines Study on concentration distribution and detonation characteristics of typical multiphase fuel in orthogonal flow field Fast aerodynamic analysis method for three-dimensional morphing wings based on deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1