{"title":"Threshold value for a quasilinear Keller–Segel chemotaxis system with the intermediate exponent in a bounded domain","authors":"Hua Zhong","doi":"10.1016/j.nonrwa.2024.104253","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a quasilinear chemotaxis model <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span> with nonlinear diffusion function <span><math><mrow><mi>D</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and chemotactic sensitivity <span><math><mrow><mi>S</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> <span><math><mrow><mo>(</mo><mi>d</mi><mo>≥</mo><mn>3</mn><mo>)</mo></mrow></math></span>. Here the rate <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>/</mo><mi>S</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></math></span> grows like <span><math><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn><mo>−</mo><mi>m</mi></mrow></msup></math></span> with <span><math><mrow><mn>2</mn><mi>d</mi><mo>/</mo><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo><</mo><mi>m</mi><mo><</mo><mn>2</mn><mo>−</mo><mn>2</mn><mo>/</mo><mi>d</mi></mrow></math></span> as <span><math><mrow><mi>s</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, and <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn></mrow></math></span>.</div><div>It is first shown that there exists a <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> such that if free energy with initial data is suitably small and <span><math><mrow><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msubsup><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>β</mi></mrow></msubsup><mo><</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msub></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mo>−</mo><mi>m</mi><mo>)</mo></mrow><mo>−</mo><mi>d</mi><mo>/</mo><mi>m</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>=</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mo>−</mo><mi>m</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span>, then the classical solutions to the above system are uniformly-in-time bounded. Second, in radially symmetric settings we can find <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>></mo><mn>0</mn></mrow></math></span> such that <span><math><mrow><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msubsup><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>β</mi></mrow></msubsup><mo>></mo><msup><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> and the corresponding solution must be unbounded. These results show that the global behavior of classical solutions is classified by the combination of norms of initial data when <span><math><mrow><mn>2</mn><mi>d</mi><mo>/</mo><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo><</mo><mi>m</mi><mo><</mo><mn>2</mn><mo>−</mo><mn>2</mn><mo>/</mo><mi>d</mi></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104253"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001925","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a quasilinear chemotaxis model with nonlinear diffusion function and chemotactic sensitivity in a bounded domain . Here the rate grows like with as , and .
It is first shown that there exists a such that if free energy with initial data is suitably small and with and , then the classical solutions to the above system are uniformly-in-time bounded. Second, in radially symmetric settings we can find such that and the corresponding solution must be unbounded. These results show that the global behavior of classical solutions is classified by the combination of norms of initial data when .
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.