Wu Baoyang , Song Shaofu , Liu Jurong , Zhang Yanni , Huang Yunfeng
{"title":"Preparation and Performance study of covalently polymerized dust suppressant via Maillard reaction","authors":"Wu Baoyang , Song Shaofu , Liu Jurong , Zhang Yanni , Huang Yunfeng","doi":"10.1016/j.powtec.2024.120409","DOIUrl":null,"url":null,"abstract":"<div><div>To effectively address coal dust pollution, the amino group (−NH<sub>2</sub>) in soy protein isolate was reacted with the carbonyl group (C=O) produced by corn starch through the Maillard reaction, overcoming the disadvantages of the existing modification methods such as sophisticated process and toxic monomer, and the optimal surfactant was determined to be SDBS by sedimentation experiments, an environmentally friendly polyhydroxy dust suppressant with both wetting and coagulation functions was finally prepared. The structural changes of the product, the reaction mechanism, and the microscopic morphology of the coal were analyzed by FTIR, XRD, and SEM. The large amount of hydroxyl groups (-OH) contained in the dust suppressant, combined with the oxygen-containing groups of the coal dust, is able to form hydrogen bonds, which promotes the agglomeration of the coal dust. The wind erosion resistance rates of this dust suppressant were 99.87 % and 99.01 % at wind speeds of 6 m/s and 12 m/s, respectively.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120409"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010532","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To effectively address coal dust pollution, the amino group (−NH2) in soy protein isolate was reacted with the carbonyl group (C=O) produced by corn starch through the Maillard reaction, overcoming the disadvantages of the existing modification methods such as sophisticated process and toxic monomer, and the optimal surfactant was determined to be SDBS by sedimentation experiments, an environmentally friendly polyhydroxy dust suppressant with both wetting and coagulation functions was finally prepared. The structural changes of the product, the reaction mechanism, and the microscopic morphology of the coal were analyzed by FTIR, XRD, and SEM. The large amount of hydroxyl groups (-OH) contained in the dust suppressant, combined with the oxygen-containing groups of the coal dust, is able to form hydrogen bonds, which promotes the agglomeration of the coal dust. The wind erosion resistance rates of this dust suppressant were 99.87 % and 99.01 % at wind speeds of 6 m/s and 12 m/s, respectively.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.