{"title":"Neutral-state black electrochromic polymer with enhanced supercapacitor electrode performance","authors":"","doi":"10.1016/j.est.2024.114512","DOIUrl":null,"url":null,"abstract":"<div><div>Neutral-state black electrochromic materials are attracting attention, especially in the applications of displays, car-rear views, sensors, and electronic papers. This study aimed to obtain a black electrochromic polymer via electrochemical techniques. For this aim, the monomer of a green-electrochromic polymer, 4-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-7-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-2-cyclohexyl-2H-benzo-[d]imidazole (PBP), was copolymerized with 3,4-ethylenedioxythiophene (EDOT) with 2:1 and 2:2 (PBP: EDOT) monomer feed ratios. The resulting copolymer films were investigated in terms of their electrochromic properties. Equal feeded copolymerization resulted in a neutral-state black electrochromic polymer (L:11.5, a:1.5, b:-2.55) with satisfying responses in the electrochromic device application (100 % electroactivity maintenance after 300 switches with 1.4 s response time). Furthermore, increasing the quantity of EDOT in the copolymer chain improved the capacitive characteristics, showing that the equal-fed copolymer is a good candidate for a supercapacitor electrode (4.07 mF/cm<sup>2</sup>). The supercapacitor device application showed that the equal feeded copolymer has superior specific capacitance retention of 97 % after 500 charge/discharge cycle, with 100 % coulombic efficiency in each cycle. Moreover, the supercapacitor is capable of lighting a 1.5 V LED for >30 s.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24040982","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Neutral-state black electrochromic materials are attracting attention, especially in the applications of displays, car-rear views, sensors, and electronic papers. This study aimed to obtain a black electrochromic polymer via electrochemical techniques. For this aim, the monomer of a green-electrochromic polymer, 4-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-7-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-2-cyclohexyl-2H-benzo-[d]imidazole (PBP), was copolymerized with 3,4-ethylenedioxythiophene (EDOT) with 2:1 and 2:2 (PBP: EDOT) monomer feed ratios. The resulting copolymer films were investigated in terms of their electrochromic properties. Equal feeded copolymerization resulted in a neutral-state black electrochromic polymer (L:11.5, a:1.5, b:-2.55) with satisfying responses in the electrochromic device application (100 % electroactivity maintenance after 300 switches with 1.4 s response time). Furthermore, increasing the quantity of EDOT in the copolymer chain improved the capacitive characteristics, showing that the equal-fed copolymer is a good candidate for a supercapacitor electrode (4.07 mF/cm2). The supercapacitor device application showed that the equal feeded copolymer has superior specific capacitance retention of 97 % after 500 charge/discharge cycle, with 100 % coulombic efficiency in each cycle. Moreover, the supercapacitor is capable of lighting a 1.5 V LED for >30 s.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.