Surface-initiated atom transfer radical polymerization for the preparation and applications of brush-modified inorganic nanoparticles

Yingxue Liu , Jiadong Wang , Feichen Cui , Yang Han , Jiajun Yan , Xuan Qin , Liqun Zhang , Krzysztof Matyjaszewski
{"title":"Surface-initiated atom transfer radical polymerization for the preparation and applications of brush-modified inorganic nanoparticles","authors":"Yingxue Liu ,&nbsp;Jiadong Wang ,&nbsp;Feichen Cui ,&nbsp;Yang Han ,&nbsp;Jiajun Yan ,&nbsp;Xuan Qin ,&nbsp;Liqun Zhang ,&nbsp;Krzysztof Matyjaszewski","doi":"10.1016/j.adna.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) is a pivotal technique in materials science, essential for growing polymer brushes on the surfaces of inorganic nanoparticles to create advanced polymer/inorganic nanocomposites. SI-ATRP originates from the broader ATRP methodology. ATRP involves a reversible redox process mediated by transition metal catalysts, which control radical polymerization. SI-ATRP extends this mechanism to surfaces, allowing for the precise grafting of polymer chains directly from nanoparticle substrates. The core of this technique lies in the careful selection and modification of nanoparticle surfaces to introduce effective ATRP initiators. One of the fundamental systems in this domain is inorganic nanoparticles grafted with polymer brushes, which are characterized by adjustable molecular attributes and intricate interactions. These systems provide a versatile platform for designing and synthesizing novel materials with diverse properties and applications, where particle brushes act as one-component composite materials or multifunctional fillers for high-performance nanocomposites. They are driving innovation in nanotechnology, biotechnology and materials engineering. This review critically examines the molecular design of tethered polymer chains from various particles and the development of particle brush materials for applications in energy, medical and catalytic fields, as well as in advanced nanocomposites with enhanced mechanical properties, responsiveness, optical properties, dielectric properties and transmission characteristics.</div></div>","PeriodicalId":100034,"journal":{"name":"Advanced Nanocomposites","volume":"1 1","pages":"Pages 318-343"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanocomposites","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949944524000169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) is a pivotal technique in materials science, essential for growing polymer brushes on the surfaces of inorganic nanoparticles to create advanced polymer/inorganic nanocomposites. SI-ATRP originates from the broader ATRP methodology. ATRP involves a reversible redox process mediated by transition metal catalysts, which control radical polymerization. SI-ATRP extends this mechanism to surfaces, allowing for the precise grafting of polymer chains directly from nanoparticle substrates. The core of this technique lies in the careful selection and modification of nanoparticle surfaces to introduce effective ATRP initiators. One of the fundamental systems in this domain is inorganic nanoparticles grafted with polymer brushes, which are characterized by adjustable molecular attributes and intricate interactions. These systems provide a versatile platform for designing and synthesizing novel materials with diverse properties and applications, where particle brushes act as one-component composite materials or multifunctional fillers for high-performance nanocomposites. They are driving innovation in nanotechnology, biotechnology and materials engineering. This review critically examines the molecular design of tethered polymer chains from various particles and the development of particle brush materials for applications in energy, medical and catalytic fields, as well as in advanced nanocomposites with enhanced mechanical properties, responsiveness, optical properties, dielectric properties and transmission characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于制备和应用刷改性无机纳米粒子的表面引发原子转移自由基聚合法
表面引发原子转移自由基聚合(SI-ATRP)是材料科学领域的一项关键技术,对于在无机纳米粒子表面生长聚合物刷,以制造先进的聚合物/无机纳米复合材料至关重要。SI-ATRP 源自更广泛的 ATRP 方法。ATRP 涉及一个由过渡金属催化剂介导的可逆氧化还原过程,该催化剂可控制自由基聚合。SI-ATRP 将这一机制扩展到表面,可直接从纳米颗粒基底精确接枝聚合物链。这项技术的核心在于精心选择和修饰纳米粒子表面,以引入有效的 ATRP 引发剂。该领域的基本系统之一是接枝聚合物刷的无机纳米粒子,其特点是分子属性可调,相互作用错综复杂。这些系统为设计和合成具有不同特性和应用的新型材料提供了一个多功能平台,其中粒子刷可用作单组分复合材料或高性能纳米复合材料的多功能填料。它们正在推动纳米技术、生物技术和材料工程领域的创新。本综述认真研究了各种粒子系链聚合物链的分子设计,以及粒子刷材料在能源、医疗和催化领域的应用开发,以及具有更强机械性能、响应性、光学性能、介电性能和传输特性的先进纳米复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermoelectric materials and devices: Applications in enhancing building energy conversion and efficiency Metal-organic frameworks and their derivatives for sustainable flame-retardant polymeric materials Advancing thermal comfort: an innovative SiO2 microsphere-decorated shish-kebab film composite for enhanced personal cooling MXene-based nanocomposites for nanofluidic energy conversion: A review Nanocomposite design for solid-state lithium metal batteries: Progress, challenge, and prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1