{"title":"Enhancing the performance of Ga2O3 FinFETs through double fin channels and buried oxide","authors":"Priyanshi Goyal, Harsupreet Kaur","doi":"10.1016/j.micrna.2024.208014","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, double fin channels and buried oxide has been implemented on Ga<sub>2</sub>O<sub>3</sub> FinFET. Exhaustive simulations have been performed to study the performance of the proposed device and its comparison has been drawn with the device with only double fin channels without buried oxide, and the conventional FinFET. Various device characteristics such as output and transfer characteristics etc., have been studied and several figure of merits (FoMs) such as transconductance, parasitic capacitances, gain bandwidth product, intrinsic delay etc., have also been obtained. Further, the inverter has been designed using all the devices under consideration. It has been demonstrated that the inverter using the proposed device exhibits excellent characteristics in terms of significant improvement in key metrics such as noise margin, transient response etc., as compared to the inverter using conventional devices. The current study also lays the groundwork for designing various high-performance circuits for ultra-high frequency applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"196 ","pages":"Article 208014"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, double fin channels and buried oxide has been implemented on Ga2O3 FinFET. Exhaustive simulations have been performed to study the performance of the proposed device and its comparison has been drawn with the device with only double fin channels without buried oxide, and the conventional FinFET. Various device characteristics such as output and transfer characteristics etc., have been studied and several figure of merits (FoMs) such as transconductance, parasitic capacitances, gain bandwidth product, intrinsic delay etc., have also been obtained. Further, the inverter has been designed using all the devices under consideration. It has been demonstrated that the inverter using the proposed device exhibits excellent characteristics in terms of significant improvement in key metrics such as noise margin, transient response etc., as compared to the inverter using conventional devices. The current study also lays the groundwork for designing various high-performance circuits for ultra-high frequency applications.