Hammad Ur Rahman, Mussawir Ul Mehmood, Ismail Lazoglu
{"title":"A centralized frost detection and estimation scheme for Internet-connected domestic refrigerators","authors":"Hammad Ur Rahman, Mussawir Ul Mehmood, Ismail Lazoglu","doi":"10.1016/j.ijrefrig.2024.10.032","DOIUrl":null,"url":null,"abstract":"<div><div>Frost accumulation on heat exchange units is a significant problem in refrigeration systems, adversely affecting their operating performance and thereby leading to increased power consumption. Therefore, timely detection and accurate quantification of frost are crucial for effective defrosting strategies. This study presents a novel centralized cloud-based IoT scheme for frost detection and thickness estimation. The image processing is performed on the cloud server to process evaporator coil images for frost thickness quantification. Experiments were conducted on a domestic refrigerator to assess the effectiveness of the proposed image-processing approach and determine latency and processing time. The presented scheme effectively quantifies frost thickness on the evaporator in the 1–5 mm range with a 10.8% error margin. The total inference time, which includes image acquisition, pre-processing, transmission latency, and frost thickness estimation, is approximately 5.15 seconds. The results demonstrate that the proposed image processing method performs comparably to conventional sensors and similar image processing techniques. Moreover, the centralized cloud-based IoT architecture presented effectively meets the scalability demands of consumer refrigerators.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"169 ","pages":"Pages 194-203"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003736","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Frost accumulation on heat exchange units is a significant problem in refrigeration systems, adversely affecting their operating performance and thereby leading to increased power consumption. Therefore, timely detection and accurate quantification of frost are crucial for effective defrosting strategies. This study presents a novel centralized cloud-based IoT scheme for frost detection and thickness estimation. The image processing is performed on the cloud server to process evaporator coil images for frost thickness quantification. Experiments were conducted on a domestic refrigerator to assess the effectiveness of the proposed image-processing approach and determine latency and processing time. The presented scheme effectively quantifies frost thickness on the evaporator in the 1–5 mm range with a 10.8% error margin. The total inference time, which includes image acquisition, pre-processing, transmission latency, and frost thickness estimation, is approximately 5.15 seconds. The results demonstrate that the proposed image processing method performs comparably to conventional sensors and similar image processing techniques. Moreover, the centralized cloud-based IoT architecture presented effectively meets the scalability demands of consumer refrigerators.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.