Yup Yoo , Junghwan Kim , Jaewon Lee , Hyungtae Cho
{"title":"Air quality improvement at urban bus stops: Optimal air purification placement using CFD","authors":"Yup Yoo , Junghwan Kim , Jaewon Lee , Hyungtae Cho","doi":"10.1016/j.scs.2024.105937","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrogen dioxide (NO<sub>2</sub>) levels are often elevated near roadways due to vehicle emissions, while sulfur dioxide (SO<sub>2</sub>) is predominantly found near petrochemical complexes as a result of industrial activities such as oil refining and chemical manufacturing. Considering the detrimental effects of these emissions on the environment and human health, the optimal placement of air purification systems at two bus stops in Ulsan, a heavily industrialized city in South Korea, was investigated in this study to reduce NO<sub>2</sub> and SO<sub>2</sub> concentrations. Computational fluid dynamics (CFD) simulations were performed to identify strategic installation locations, resulting in a significant reduction in pollutant levels. The largest impact was noted for the Deokha Market bus stop, whereby the added health risk (AR) decreased by 1.93 % and the exposure reduction effectiveness (ERE), a measure of air purification system efficiency, increased by 13.8 %. Similarly, at the Hyomun Intersection bus stop, placing the system near the sidewalk led to a significant reduction in AR by 1.60 % and an increase in ERE by 11.63 %. Additionally, air purification systems at Ulsan bus stops are expected to reduce NO2 levels by 9.1 ppb, decreasing mortality risk by 1.44 %, saving 7 lives annually, and yielding an economic benefit of 33.06 million USD.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"117 ","pages":"Article 105937"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724007613","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen dioxide (NO2) levels are often elevated near roadways due to vehicle emissions, while sulfur dioxide (SO2) is predominantly found near petrochemical complexes as a result of industrial activities such as oil refining and chemical manufacturing. Considering the detrimental effects of these emissions on the environment and human health, the optimal placement of air purification systems at two bus stops in Ulsan, a heavily industrialized city in South Korea, was investigated in this study to reduce NO2 and SO2 concentrations. Computational fluid dynamics (CFD) simulations were performed to identify strategic installation locations, resulting in a significant reduction in pollutant levels. The largest impact was noted for the Deokha Market bus stop, whereby the added health risk (AR) decreased by 1.93 % and the exposure reduction effectiveness (ERE), a measure of air purification system efficiency, increased by 13.8 %. Similarly, at the Hyomun Intersection bus stop, placing the system near the sidewalk led to a significant reduction in AR by 1.60 % and an increase in ERE by 11.63 %. Additionally, air purification systems at Ulsan bus stops are expected to reduce NO2 levels by 9.1 ppb, decreasing mortality risk by 1.44 %, saving 7 lives annually, and yielding an economic benefit of 33.06 million USD.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;