Identifying changes in vaginal fluid using SERS: Advancing diagnosis of vulvovaginal candidiasis

IF 5.4 Q1 CHEMISTRY, ANALYTICAL Sensing and Bio-Sensing Research Pub Date : 2024-10-23 DOI:10.1016/j.sbsr.2024.100702
Sylwia M. Berus , Tomasz Szymborski , Beata Młynarczyk-Bonikowska , Grażyna Przedpełska , Monika Adamczyk-Popławska , Agnieszka Kamińska
{"title":"Identifying changes in vaginal fluid using SERS: Advancing diagnosis of vulvovaginal candidiasis","authors":"Sylwia M. Berus ,&nbsp;Tomasz Szymborski ,&nbsp;Beata Młynarczyk-Bonikowska ,&nbsp;Grażyna Przedpełska ,&nbsp;Monika Adamczyk-Popławska ,&nbsp;Agnieszka Kamińska","doi":"10.1016/j.sbsr.2024.100702","DOIUrl":null,"url":null,"abstract":"<div><div>Vaginal infections, medically termed vaginitis, encompass a spectrum of symptomatic presentations arising from disturbances within the vaginal microflora. The conventional diagnostic approach relies on microscopic examination of wet preparation of vaginal discharge, considered the ‘gold standard’ in clinical practice. Complementary to this, culture-based methodologies are often employed to reinforce diagnostic accuracy. However, challenges such as subjectivity in result interpretation, resource-intensive requirements regarding skilled personnel, and reagent utilization underscore the need for alternative diagnostic strategies.</div><div>In this article, we demonstrate surface-enhanced Raman spectroscopy (SERS) and partial least squares regression (PLSR) techniques to elucidate the molecular signatures present in vaginal fluids, accounting for various influencing factors, including disruptions in the natural microflora, vaginal irrigation practices, and contraceptive usage. Furthermore, we investigated the spectral manifestations associated with vulvovaginal candidiasis (VVC) relative to control samples. Each clinical specimen underwent meticulous characterization encompassing microbial composition, pH levels, purity, and other pertinent parameters.</div><div>Our findings unveil significant associations between extraneous inflammatory factors such as vaginal irrigation and diminished sample purity with alterations in SERS signals. Conversely, the day of the menstrual cycle phase exhibits negligible influence on spectral profiles. Notably, VVC samples demonstrated diverse spectral responses correlating with the abundance of pathogenic bacteria. These explorations hold promise in paving the path towards developing a novel intrinsic framework for the diagnosis of vaginitis.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100702"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vaginal infections, medically termed vaginitis, encompass a spectrum of symptomatic presentations arising from disturbances within the vaginal microflora. The conventional diagnostic approach relies on microscopic examination of wet preparation of vaginal discharge, considered the ‘gold standard’ in clinical practice. Complementary to this, culture-based methodologies are often employed to reinforce diagnostic accuracy. However, challenges such as subjectivity in result interpretation, resource-intensive requirements regarding skilled personnel, and reagent utilization underscore the need for alternative diagnostic strategies.
In this article, we demonstrate surface-enhanced Raman spectroscopy (SERS) and partial least squares regression (PLSR) techniques to elucidate the molecular signatures present in vaginal fluids, accounting for various influencing factors, including disruptions in the natural microflora, vaginal irrigation practices, and contraceptive usage. Furthermore, we investigated the spectral manifestations associated with vulvovaginal candidiasis (VVC) relative to control samples. Each clinical specimen underwent meticulous characterization encompassing microbial composition, pH levels, purity, and other pertinent parameters.
Our findings unveil significant associations between extraneous inflammatory factors such as vaginal irrigation and diminished sample purity with alterations in SERS signals. Conversely, the day of the menstrual cycle phase exhibits negligible influence on spectral profiles. Notably, VVC samples demonstrated diverse spectral responses correlating with the abundance of pathogenic bacteria. These explorations hold promise in paving the path towards developing a novel intrinsic framework for the diagnosis of vaginitis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 SERS 识别阴道液的变化:推进外阴阴道念珠菌病的诊断
阴道感染,医学上称为阴道炎,包括一系列因阴道微生物菌群紊乱而引起的症状表现。传统的诊断方法是对阴道分泌物的湿制剂进行显微镜检查,这被认为是临床实践中的 "黄金标准"。作为补充,通常采用基于培养的方法来提高诊断的准确性。在本文中,我们展示了表面增强拉曼光谱(SERS)和偏最小二乘法回归(PLSR)技术,以阐明阴道分泌物中存在的分子特征,并考虑到各种影响因素,包括自然微生物菌群的破坏、阴道灌洗方法和避孕药的使用。此外,我们还研究了外阴阴道念珠菌病(VVC)相对于对照样本的光谱表现。我们的研究结果揭示了外来炎症因素(如阴道灌洗和样本纯度降低)与 SERS 信号变化之间的显著关联。相反,月经周期阶段的天数对光谱曲线的影响可以忽略不计。值得注意的是,VVC 样品表现出不同的光谱响应,这与致病菌的数量有关。这些探索有望为开发诊断阴道炎的新型内在框架铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
期刊最新文献
Fabrication and characterization of inkjet-printed interdigitated electrodes for non-faradaic electrochemical detection of uromodulin in urine Overcoming challenges in plasmonic biosensors deployment for clinical and biomedical applications: A systematic review and meta-analysis Embedded optofluidic biosensing platform for enzyme-linked immunosorbent assay “All-on-a-Tube” POCT of Salmonella in large-volume sample Design of flexible polyimide-based serpentine EMG sensor for AI-enabled fatigue detection in construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1