Fei Xu , Baoqiang Zhao , Hanjie Wen , Hefan Liu , Xiaofeng Li , Yu Chen , Yi Cui , Chengyu Mi , Jian Yang , Chuan Wang
{"title":"Hydrothermal overprinting of the Li-rich strata deposited in the Mesoproterozoic Wumishan Formation, Hebei Province, North China","authors":"Fei Xu , Baoqiang Zhao , Hanjie Wen , Hefan Liu , Xiaofeng Li , Yu Chen , Yi Cui , Chengyu Mi , Jian Yang , Chuan Wang","doi":"10.1016/j.gr.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium (Li), as a strategic critical metal, plays a pivotal role in the emerging energy landscape, particularly in the context of Li-ion batteries driving the new energy economy. Recently, Li-rich strata (with Li<sub>2</sub>O > 0.3 wt%) have been discovered in the Mesoproterozoic Wumishan Formation in Hebei Province, North China, suggesting a prospective Li reservoir. This study investigates these Li-rich strata using geochemical and in-situ micro-analytical techniques to explore the occurrence of Li and the formation mechanism of Li-host minerals, aiming for a comprehensive understanding of the supernormal enrichment of Li. The Li-rich samples are predominantly composed of dolomite and quartz, followed by clay minerals such as illite, interstratified illite–smectite (I/S), and chlorite, with minor amounts of K-feldspar, albite, biotite, calcite, baryte, fluorite and fluorapatite. In-situ analysis and <sup>7</sup>Li NMR spectroscopy reveal that Li predominantly occupies the octahedral sites within the structures of authigenic illite and I/S, while its absence in clastic illite, clastic chlorite, unaltered K-feldspar, and dolomite. The presence of veined minerals (e.g., fluorite, baryte, and calcite) and a strong positive correlation between Li and F imply that post-depositional hydrothermal fluids have significantly contributed to the formation of Li-host minerals. The paragenesis of these minerals suggests that Li-bearing illite has formed through the hydrothermal alteration of K-feldspar. These Li-bearing illites subsequently transformed into Li-bearing I/S, consisting of illite-rich I/S and smectite-rich I/S, under continuous hydrothermal alteration. Lithium could have been leached from the surrounding carbonate rock and tuff through water–rock interaction and subsequently enriched by post-depositional hydrothermal fluids in specific regions, leading to mineralization. These findings provide valuable insights for targeting exploration of this promising Li resource.</div></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"138 ","pages":"Pages 16-30"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X24003009","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium (Li), as a strategic critical metal, plays a pivotal role in the emerging energy landscape, particularly in the context of Li-ion batteries driving the new energy economy. Recently, Li-rich strata (with Li2O > 0.3 wt%) have been discovered in the Mesoproterozoic Wumishan Formation in Hebei Province, North China, suggesting a prospective Li reservoir. This study investigates these Li-rich strata using geochemical and in-situ micro-analytical techniques to explore the occurrence of Li and the formation mechanism of Li-host minerals, aiming for a comprehensive understanding of the supernormal enrichment of Li. The Li-rich samples are predominantly composed of dolomite and quartz, followed by clay minerals such as illite, interstratified illite–smectite (I/S), and chlorite, with minor amounts of K-feldspar, albite, biotite, calcite, baryte, fluorite and fluorapatite. In-situ analysis and 7Li NMR spectroscopy reveal that Li predominantly occupies the octahedral sites within the structures of authigenic illite and I/S, while its absence in clastic illite, clastic chlorite, unaltered K-feldspar, and dolomite. The presence of veined minerals (e.g., fluorite, baryte, and calcite) and a strong positive correlation between Li and F imply that post-depositional hydrothermal fluids have significantly contributed to the formation of Li-host minerals. The paragenesis of these minerals suggests that Li-bearing illite has formed through the hydrothermal alteration of K-feldspar. These Li-bearing illites subsequently transformed into Li-bearing I/S, consisting of illite-rich I/S and smectite-rich I/S, under continuous hydrothermal alteration. Lithium could have been leached from the surrounding carbonate rock and tuff through water–rock interaction and subsequently enriched by post-depositional hydrothermal fluids in specific regions, leading to mineralization. These findings provide valuable insights for targeting exploration of this promising Li resource.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.