An experimental investigation on fracture toughness predictions for carbon segregation metals using spherical indentation tests

IF 3 2区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Pressure Vessels and Piping Pub Date : 2024-11-05 DOI:10.1016/j.ijpvp.2024.105357
Weiwei Yu , Lu Zhang , Weipeng Li , Mingya Chen , Qunjia Peng , Yaolei Han , Han Liu , Tairui Zhang
{"title":"An experimental investigation on fracture toughness predictions for carbon segregation metals using spherical indentation tests","authors":"Weiwei Yu ,&nbsp;Lu Zhang ,&nbsp;Weipeng Li ,&nbsp;Mingya Chen ,&nbsp;Qunjia Peng ,&nbsp;Yaolei Han ,&nbsp;Han Liu ,&nbsp;Tairui Zhang","doi":"10.1016/j.ijpvp.2024.105357","DOIUrl":null,"url":null,"abstract":"<div><div>The occurrence of carbon segregation in steam generator (SG) often leads to a decrease in fracture toughness and an increase in failure risk. To ensure the service safety of SG, a non-destructive testing method for quantitative evaluation of fracture toughness reduction with carbon segregation is necessary. To this end, this study provides an experimental investigation on whether the spherical indentation tests (SITs) are capable of revealing the fracture toughness reduction with the increasing carbon content. Solidarity of the existing fracture toughness prediction models has been extensively investigated through experiments on four carbon segregation samples with carbon content 0.21 %, 0.31 %, 0.35 %, and 0.39 %, respectively. It is found that both the critical strain and critical damage criteria, depending on phenomenologically summarized fixed critical values, failed in reproducing the decreasing trend of fracture toughness with increasing carbon content. For the critical stress criterion, the updated critical value, achieved by comparing the results of conventional fracture toughness and indentation tests on the steel with 0.21 % carbon content, can improve the prediction accuracy and successfully reproduce of variation of fracture toughness with carbon contents. However, consistency of three repeated predictions from the critical stress criteria is poor, which may hinder its engineering application. By contrast, the energy release rate model independent of phenomenologically summarized critical values can yield roughly well predictions, from viewpoints of both decreasing trend of fracture toughness with increasing carbon content and the repeatability of three tests. This experimental investigation can provide methodological guidance for nondestructive fracture toughness evaluation on SG facing carbon segregation.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105357"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124002357","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The occurrence of carbon segregation in steam generator (SG) often leads to a decrease in fracture toughness and an increase in failure risk. To ensure the service safety of SG, a non-destructive testing method for quantitative evaluation of fracture toughness reduction with carbon segregation is necessary. To this end, this study provides an experimental investigation on whether the spherical indentation tests (SITs) are capable of revealing the fracture toughness reduction with the increasing carbon content. Solidarity of the existing fracture toughness prediction models has been extensively investigated through experiments on four carbon segregation samples with carbon content 0.21 %, 0.31 %, 0.35 %, and 0.39 %, respectively. It is found that both the critical strain and critical damage criteria, depending on phenomenologically summarized fixed critical values, failed in reproducing the decreasing trend of fracture toughness with increasing carbon content. For the critical stress criterion, the updated critical value, achieved by comparing the results of conventional fracture toughness and indentation tests on the steel with 0.21 % carbon content, can improve the prediction accuracy and successfully reproduce of variation of fracture toughness with carbon contents. However, consistency of three repeated predictions from the critical stress criteria is poor, which may hinder its engineering application. By contrast, the energy release rate model independent of phenomenologically summarized critical values can yield roughly well predictions, from viewpoints of both decreasing trend of fracture toughness with increasing carbon content and the repeatability of three tests. This experimental investigation can provide methodological guidance for nondestructive fracture toughness evaluation on SG facing carbon segregation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用球形压痕试验预测碳偏析金属断裂韧性的实验研究
蒸汽发生器(SG)中碳偏析的发生通常会导致断裂韧性下降,增加失效风险。为确保蒸汽发生器的使用安全,有必要采用无损检测方法对碳偏析导致的断裂韧性降低进行定量评估。为此,本研究对球形压痕测试(SIT)是否能够揭示断裂韧性随碳含量增加而降低的情况进行了实验研究。通过对碳含量分别为 0.21 %、0.31 %、0.35 % 和 0.39 % 的四种碳偏析样品进行实验,广泛研究了现有断裂韧性预测模型的稳固性。结果发现,临界应变准则和临界损伤准则(取决于现象学总结的固定临界值)都无法再现断裂韧性随碳含量增加而降低的趋势。就临界应力准则而言,通过比较含碳量为 0.21 % 的钢材的常规断裂韧性和压痕测试结果而得出的更新临界值可以提高预测精度,并成功再现断裂韧性随含碳量的变化。然而,根据临界应力准则进行的三次重复预测的一致性较差,这可能会妨碍其工程应用。相比之下,独立于现象学总结的临界值的能量释放率模型,无论从断裂韧性随碳含量增加而降低的趋势,还是从三次试验的重复性来看,都能得出大致良好的预测结果。这项实验研究可为面临碳偏析的 SG 的无损断裂韧性评估提供方法指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
13.30%
发文量
208
审稿时长
17 months
期刊介绍: Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants. The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome: • Pressure vessel engineering • Structural integrity assessment • Design methods • Codes and standards • Fabrication and welding • Materials properties requirements • Inspection and quality management • Maintenance and life extension • Ageing and environmental effects • Life management Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time. International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.
期刊最新文献
Enhanced creep lifetime in P91 steel weldments via stabilizing tempered martensite structure Study on stress concentration and fatigue life of tubing with slip indentation Failure mechanisms of fusion-bonded reinforcement joints in reinforced thermoplastic pipes under uniaxial tensile conditions A comprehensive finite element framework for modeling of PEX-Al-PEX composite pipes Effects of different types of corrosion on seismic performance of circular hollow section T-joints subjected to coupling load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1