Mahmoud A.A. Ibrahim , Al-shimaa S.M. Rady , Peter A. Sidhom , Mahmoud E.S. Soliman , Shahzeb Khan , Mohamed A. El-Tayeb , Ashraf M.M. Abdelbacki , Tamer Shoeib , Lamiaa A. Mohamed
{"title":"A comparative DFT study of beryllium oxide (Be12O12) and boron nitride (B12N12) nanocages as potent drug delivery systems for allopurinol drug","authors":"Mahmoud A.A. Ibrahim , Al-shimaa S.M. Rady , Peter A. Sidhom , Mahmoud E.S. Soliman , Shahzeb Khan , Mohamed A. El-Tayeb , Ashraf M.M. Abdelbacki , Tamer Shoeib , Lamiaa A. Mohamed","doi":"10.1016/j.cplett.2024.141729","DOIUrl":null,"url":null,"abstract":"<div><div>The potential of Be<sub>12</sub>O<sub>12</sub> <!-->and B<sub>12</sub>N<sub>12</sub> <!-->nanocages as Allopurinol (APN) drug delivery systems was investigated using DFT methods. The adsorption process was confirmed by substantial negative interaction and adsorption energies of APN∙∙∙Be<sub>12</sub>O<sub>12</sub> <!-->and ∙∙∙B<sub>12</sub>N<sub>12</sub> <!-->complexes. SAPT analysis indicated that electrostatic forces significantly dominated the interactions. Intermolecular interactions within APN∙∙∙nanocage complexes were thoroughly characterized. The analysis of TDOS and PDOS assured substantial loading of APN over Be<sub>12</sub>O<sub>12</sub> <!-->and B<sub>12</sub>N<sub>12</sub>. The substantial effect of doped atoms on the APN adsorption process was also estimated in APN∙∙∙MgBe<sub>11</sub>O<sub>12</sub> <!-->and ∙∙∙AlB<sub>11</sub>N<sub>12</sub> <!-->complexes, respectively. The nature of the APN-loading process was affirmed to be spontaneous and exothermic.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"857 ","pages":"Article 141729"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424006717","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The potential of Be12O12 and B12N12 nanocages as Allopurinol (APN) drug delivery systems was investigated using DFT methods. The adsorption process was confirmed by substantial negative interaction and adsorption energies of APN∙∙∙Be12O12 and ∙∙∙B12N12 complexes. SAPT analysis indicated that electrostatic forces significantly dominated the interactions. Intermolecular interactions within APN∙∙∙nanocage complexes were thoroughly characterized. The analysis of TDOS and PDOS assured substantial loading of APN over Be12O12 and B12N12. The substantial effect of doped atoms on the APN adsorption process was also estimated in APN∙∙∙MgBe11O12 and ∙∙∙AlB11N12 complexes, respectively. The nature of the APN-loading process was affirmed to be spontaneous and exothermic.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.