Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-11-07 DOI:10.1038/s41565-024-01804-0
Lennart Grabenhorst, Martina Pfeiffer, Thea Schinkel, Mirjam Kümmerlin, Gereon A. Brüggenthies, Jasmin B. Maglic, Florian Selbach, Alexander T. Murr, Philip Tinnefeld, Viktorija Glembockyte
{"title":"Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output","authors":"Lennart Grabenhorst, Martina Pfeiffer, Thea Schinkel, Mirjam Kümmerlin, Gereon A. Brüggenthies, Jasmin B. Maglic, Florian Selbach, Alexander T. Murr, Philip Tinnefeld, Viktorija Glembockyte","doi":"10.1038/s41565-024-01804-0","DOIUrl":null,"url":null,"abstract":"<p>Biosensors play key roles in medical research and diagnostics. However, the development of biosensors for new biomolecular targets of interest often involves tedious optimization steps to ensure a high signal response at the analyte concentration of interest. Here we show a modular nanosensor platform that facilitates these steps by offering ways to decouple and independently tune the signal output as well as the response window. Our approach utilizes a dynamic DNA origami nanostructure to engineer a high optical signal response based on fluorescence resonance energy transfer. We demonstrate mechanisms to tune the sensor’s response window, specificity and cooperativity as well as highlight the modularity of the proposed platform by extending it to different biomolecular targets including more complex sensing schemes. This versatile nanosensor platform offers a promising starting point for the rapid development of biosensors with tailored properties.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"18 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01804-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biosensors play key roles in medical research and diagnostics. However, the development of biosensors for new biomolecular targets of interest often involves tedious optimization steps to ensure a high signal response at the analyte concentration of interest. Here we show a modular nanosensor platform that facilitates these steps by offering ways to decouple and independently tune the signal output as well as the response window. Our approach utilizes a dynamic DNA origami nanostructure to engineer a high optical signal response based on fluorescence resonance energy transfer. We demonstrate mechanisms to tune the sensor’s response window, specificity and cooperativity as well as highlight the modularity of the proposed platform by extending it to different biomolecular targets including more complex sensing schemes. This versatile nanosensor platform offers a promising starting point for the rapid development of biosensors with tailored properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过将传感与信号输出解耦,设计模块化可调谐单分子传感器
生物传感器在医学研究和诊断中发挥着关键作用。然而,针对新的生物分子目标开发生物传感器往往涉及繁琐的优化步骤,以确保在相关分析物浓度下的高信号响应。在这里,我们展示了一种模块化纳米传感器平台,它通过提供解耦和独立调节信号输出以及响应窗口的方法来简化这些步骤。我们的方法利用动态 DNA 折纸纳米结构,在荧光共振能量转移的基础上设计出高光学信号响应。我们展示了调整传感器响应窗口、特异性和合作性的机制,并通过将其扩展到不同的生物分子目标(包括更复杂的传感方案)来突出所提议平台的模块性。这种多功能纳米传感器平台为快速开发具有定制特性的生物传感器提供了一个很好的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
Dipolar wavevector interference induces a polar skyrmion lattice in strained BiFeO3 films Chemistry, manufacturing and controls strategies for using novel excipients in lipid nanoparticles Spatiotemporal imaging of nonlinear optics in van der Waals waveguides Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays Anomalous Hall spin current drives self-generated spin–orbit torque in a ferromagnet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1