Shuai Zhou , Zefeng Huang , Jian Song , Yi Duan , Gang Guo , Weigang Wang , Xiulan Ou , Yuanyuan Gao , Yinglong Su
{"title":"Metagenomic analysis of the dichotomous role of uranium in regulating intracellular and extracellular antibiotic resistance genes in activated sludge","authors":"Shuai Zhou , Zefeng Huang , Jian Song , Yi Duan , Gang Guo , Weigang Wang , Xiulan Ou , Yuanyuan Gao , Yinglong Su","doi":"10.1016/j.envpol.2024.125258","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotic resistance genes (ARGs) in activated sludge include intracellular ARGs (iARGs) and extracellular ARGs (eARGs), both of which are recognized as emerging pollutants. While the activated sludge process has been commonly considered for treating wastewater contaminated with radionuclide, the effects and mechanisms of radioactive heavy metals on the fate of iARGs and eARGs (i/e-ARGs) in activated sludge are largely elusive. Here, the distribution, mobility, and hosts of i/e-ARGs in activated sludge during environmental concentrations (50 μg/L and 5000 μg/L) of radioactive uranium (U) stress were explored via metagenomics. The results revealed that the total relative abundance of iARGs and eARGs decreased by 11.62% and 10.41%, respectively, after 90 days of 50 μg/L of U treatment. In contrast, both i/e-multi- and tetracycline ARGs remarkably increased after being exposed to 5000 μg/L of U. Additionally, exposure to 5000 μg/L of U triggered notable decrease in i/e-insertion sequences and plasmids abundance, but significantly enriched i/e-integrons (<em>p</em> < 0.05). Partial least squares pathway modelling indicated that the prevalence of iARGs and eARGs in activated sludge was primarily driven by bacterial hosts and functional genes, respectively. Our findings revealed the dichotomous variation landscape and mechanisms of i/e-ARGs dynamics in activated sludge during U exposure, offering valuable insights for controlling ARGs risk during radioactive wastewater treatment.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"363 ","pages":"Article 125258"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749124019754","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance genes (ARGs) in activated sludge include intracellular ARGs (iARGs) and extracellular ARGs (eARGs), both of which are recognized as emerging pollutants. While the activated sludge process has been commonly considered for treating wastewater contaminated with radionuclide, the effects and mechanisms of radioactive heavy metals on the fate of iARGs and eARGs (i/e-ARGs) in activated sludge are largely elusive. Here, the distribution, mobility, and hosts of i/e-ARGs in activated sludge during environmental concentrations (50 μg/L and 5000 μg/L) of radioactive uranium (U) stress were explored via metagenomics. The results revealed that the total relative abundance of iARGs and eARGs decreased by 11.62% and 10.41%, respectively, after 90 days of 50 μg/L of U treatment. In contrast, both i/e-multi- and tetracycline ARGs remarkably increased after being exposed to 5000 μg/L of U. Additionally, exposure to 5000 μg/L of U triggered notable decrease in i/e-insertion sequences and plasmids abundance, but significantly enriched i/e-integrons (p < 0.05). Partial least squares pathway modelling indicated that the prevalence of iARGs and eARGs in activated sludge was primarily driven by bacterial hosts and functional genes, respectively. Our findings revealed the dichotomous variation landscape and mechanisms of i/e-ARGs dynamics in activated sludge during U exposure, offering valuable insights for controlling ARGs risk during radioactive wastewater treatment.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.