Formation of aluminum nitride in dross by contact-diffusion reaction during aluminum recycling

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2024-11-07 DOI:10.1016/j.jallcom.2024.177432
Jun Liu, Shengen Zhang, Bingjie Lou, Hanlin Shen
{"title":"Formation of aluminum nitride in dross by contact-diffusion reaction during aluminum recycling","authors":"Jun Liu, Shengen Zhang, Bingjie Lou, Hanlin Shen","doi":"10.1016/j.jallcom.2024.177432","DOIUrl":null,"url":null,"abstract":"Secondary aluminum dross is a solid waste after aluminum extraction from the slag produced during aluminum recycling. It is classified as a hazardous waste due to the high content of active aluminum nitride (AlN). This work studied the thermodynamics and kinetics of AlN formation in aluminum dross. Aluminum tends to react with N<sub>2</sub> to form AlN, when the partial pressure of nitrogen (N<sub>2</sub>) is much greater than that of oxygen (O<sub>2</sub>) (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 1631.6 1096.9\" width=\"3.79ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-50\"></use></g></g><g is=\"true\" transform=\"translate(642,-150)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(568,-107)\"><g is=\"true\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">P</mi></mrow><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">P</mi></mrow><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></mrow></msub></math></script></span>≫<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 1603.3 1096.9\" width=\"3.724ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-50\"></use></g></g><g is=\"true\" transform=\"translate(642,-155)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-4F\"></use></g></g><g is=\"true\" transform=\"translate(539,-107)\"><g is=\"true\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">P</mi></mrow><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">O</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">P</mi></mrow><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">O</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></mrow></msub></math></script></span>) in thermodynamics. Additionally, the reaction between aluminum and N<sub>2</sub> is accelerated with the increasing temperature. Approximately 36.37% of aluminum was transformed into AlN at 700°C according to kinetic analysis. Aluminum recycling involves smelting, refining, and dross processing. The dross produced from these different processes has various compositions and hazardous properties. The formation mechanism of AlN from the three processes was revealed based on the thermodynamic and kinetic analyses. The reaction mechanisms in these processes were identified as surface contact reaction, internal and surface contact reaction, and rotational surface contact reaction between the aluminum melt and N<sub>2</sub>, respectively. X-ray diffraction (XRD) and electron probe microanalysis (EPMA) analyses were used to determine the phase and composition of the aluminum dross. The nitrogen content in the aluminum dross from smelting, refining, and dross processing was found to be 3.3%, 5.2%, and 9.6%, respectively. The monthly dross production were 276.3 tons, 22.7 tons, and 318.2 tons, respectively, according to statistics. It was calculated that the nitrogen generated in the three process was 9.12 tons, 1.18 tons, and 20.25 tons, respectively. Therefore, dross processing is the primary source of AlN. A rapid dross processing method with small-scale vertical stirring was proposed to shorten the reaction between the aluminum melt and N<sub>2</sub>, thereby reducing AlN formation. This work could provide guidance for reducing hazardous AlN in aluminum dross and optimizing the aluminum recycling process.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177432","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Secondary aluminum dross is a solid waste after aluminum extraction from the slag produced during aluminum recycling. It is classified as a hazardous waste due to the high content of active aluminum nitride (AlN). This work studied the thermodynamics and kinetics of AlN formation in aluminum dross. Aluminum tends to react with N2 to form AlN, when the partial pressure of nitrogen (N2) is much greater than that of oxygen (O2) (PN2PO2) in thermodynamics. Additionally, the reaction between aluminum and N2 is accelerated with the increasing temperature. Approximately 36.37% of aluminum was transformed into AlN at 700°C according to kinetic analysis. Aluminum recycling involves smelting, refining, and dross processing. The dross produced from these different processes has various compositions and hazardous properties. The formation mechanism of AlN from the three processes was revealed based on the thermodynamic and kinetic analyses. The reaction mechanisms in these processes were identified as surface contact reaction, internal and surface contact reaction, and rotational surface contact reaction between the aluminum melt and N2, respectively. X-ray diffraction (XRD) and electron probe microanalysis (EPMA) analyses were used to determine the phase and composition of the aluminum dross. The nitrogen content in the aluminum dross from smelting, refining, and dross processing was found to be 3.3%, 5.2%, and 9.6%, respectively. The monthly dross production were 276.3 tons, 22.7 tons, and 318.2 tons, respectively, according to statistics. It was calculated that the nitrogen generated in the three process was 9.12 tons, 1.18 tons, and 20.25 tons, respectively. Therefore, dross processing is the primary source of AlN. A rapid dross processing method with small-scale vertical stirring was proposed to shorten the reaction between the aluminum melt and N2, thereby reducing AlN formation. This work could provide guidance for reducing hazardous AlN in aluminum dross and optimizing the aluminum recycling process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铝回收过程中通过接触扩散反应在铝渣中形成氮化铝
二次铝渣是从铝回收过程中产生的铝渣中提取铝后的固体废物。由于活性氮化铝(AlN)含量较高,它被归类为危险废物。这项工作研究了铝渣中氮化铝形成的热力学和动力学。在热力学中,当氮(N2)的分压远大于氧(O2)的分压(PN2PN2≫PO2PO2)时,铝倾向于与 N2 反应生成 AlN。此外,铝和 N2 的反应会随着温度的升高而加快。根据动力学分析,约有 36.37% 的铝在 700°C 时转化为 AlN。铝回收包括熔炼、精炼和铝渣处理。这些不同工艺产生的铝渣具有不同的成分和危险特性。根据热力学和动力学分析,揭示了这三种工艺中 AlN 的形成机理。这些工艺的反应机理分别被确定为铝熔体与 N2 之间的表面接触反应、内部和表面接触反应以及旋转表面接触反应。利用 X 射线衍射(XRD)和电子探针显微分析(EPMA)确定了铝渣的物相和成分。结果发现,在熔炼、精炼和铝渣加工过程中,铝渣中的氮含量分别为 3.3%、5.2% 和 9.6%。据统计,每月的铝渣产量分别为 276.3 吨、22.7 吨和 318.2 吨。经计算,三个过程中产生的氮分别为 9.12 吨、1.18 吨和 20.25 吨。因此,锡渣加工是铝氮的主要来源。研究人员提出了一种采用小规模垂直搅拌的快速铝渣处理方法,以缩短铝熔体与 N2 之间的反应时间,从而减少 AlN 的形成。这项工作可为减少铝渣中的有害 AlN 和优化铝回收工艺提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Self-assembly aggregation-induced emission from Eu (III) complexes with o-hydroxy-benzophenone ligands CORROSION BEHAVIOUR OF ADVANCED COMPOSITES CONTAINING SURFACE MODIFIED SIC AS REINFORCEMENT Engineering ZnNi-LDH with improved wettability by N-direct-doping for high-performance supercapacitor Formation of aluminum nitride in dross by contact-diffusion reaction during aluminum recycling Exploring the multi-scale evolution mechanism of the ultra-high-temperature mechanical behaviour of Carbon/Carbon composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1