Si/AlN p-n heterojunction interfaced with ultrathin SiO2

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2024-11-07 DOI:10.1016/j.apsusc.2024.161737
Haris Naeem Abbasi, Yi Lu, Jie Zhou, Ding Wang, Kai Sun, Ping Wang, Jiarui Gong, Dong Liu, Yang Liu, Ranveer Singh, Zetian Mi, Zhenqiang Ma
{"title":"Si/AlN p-n heterojunction interfaced with ultrathin SiO2","authors":"Haris Naeem Abbasi, Yi Lu, Jie Zhou, Ding Wang, Kai Sun, Ping Wang, Jiarui Gong, Dong Liu, Yang Liu, Ranveer Singh, Zetian Mi, Zhenqiang Ma","doi":"10.1016/j.apsusc.2024.161737","DOIUrl":null,"url":null,"abstract":"Ultra-wide bandgap (UWBG) materials offer significant potential for high-power RF electronics and deep ultraviolet photonics. Among these, Al<sub>x</sub>Ga<sub>1−x</sub>N stands out due to its tunable bandgap (3.4 eV to 6.2 eV) and excellent material properties. However, achieving efficient p-type doping in high aluminum composition AlGaN remains a challenge. This study presents a novel approach by fabricating a <em>p<sup>+</sup></em>Si<em>/n<sup>-</sup></em>AlN<em>/n<sup>+</sup></em>AlGaN heterojunction using semiconductor grafting. Atomic force microscopy (AFM) revealed smooth surfaces for AlN and the nanomembrane, with roughness values of 1.96 nm and 0.545 nm, respectively. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirmed a sharp and well-defined Si/AlN interface with minimal defects and strong chemical bonding. X-ray photoelectron spectroscopy (XPS) measurements identified a type-I heterojunction with a valence band offset (<em>ΔEv</em>) of 2.73–2.84 eV and a conduction band offset (<em>ΔEc</em>) of 2.22–2.11 eV. The pn diode devices exhibited linear current–voltage (I-V) characteristics, an ideality factor of 1.92, and a high rectification ratio of 3.3 × 104, with a turn-on voltage of 3.9 V. Temperature-dependent I-V measurements showed stable operation up to 90 °C. The heterojunction’s high-quality interface and impressive electrical performance underscore its potential for advanced AlGaN-based optoelectronic and electronic applications.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161737","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-wide bandgap (UWBG) materials offer significant potential for high-power RF electronics and deep ultraviolet photonics. Among these, AlxGa1−xN stands out due to its tunable bandgap (3.4 eV to 6.2 eV) and excellent material properties. However, achieving efficient p-type doping in high aluminum composition AlGaN remains a challenge. This study presents a novel approach by fabricating a p+Si/n-AlN/n+AlGaN heterojunction using semiconductor grafting. Atomic force microscopy (AFM) revealed smooth surfaces for AlN and the nanomembrane, with roughness values of 1.96 nm and 0.545 nm, respectively. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirmed a sharp and well-defined Si/AlN interface with minimal defects and strong chemical bonding. X-ray photoelectron spectroscopy (XPS) measurements identified a type-I heterojunction with a valence band offset (ΔEv) of 2.73–2.84 eV and a conduction band offset (ΔEc) of 2.22–2.11 eV. The pn diode devices exhibited linear current–voltage (I-V) characteristics, an ideality factor of 1.92, and a high rectification ratio of 3.3 × 104, with a turn-on voltage of 3.9 V. Temperature-dependent I-V measurements showed stable operation up to 90 °C. The heterojunction’s high-quality interface and impressive electrical performance underscore its potential for advanced AlGaN-based optoelectronic and electronic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与超薄二氧化硅连接的硅/氮化铝 p-n 异质结
超宽带隙(UWBG)材料为大功率射频电子学和深紫外光学提供了巨大的发展潜力。其中,AlxGa1-xN 因其可调带隙(3.4 eV 至 6.2 eV)和优异的材料特性而脱颖而出。然而,在高铝成分的 AlGaN 中实现高效的 p 型掺杂仍然是一项挑战。本研究提出了一种新方法,即利用半导体接枝技术制造 p+Si/n-AlN/n+AlGaN 异质结。原子力显微镜(AFM)显示 AlN 和纳米膜表面光滑,粗糙度分别为 1.96 nm 和 0.545 nm。高角度环形暗场扫描透射电子显微镜(HAADF-STEM)证实,Si/AlN 界面清晰明确,缺陷极少,化学键很强。X 射线光电子能谱 (XPS) 测量确定了 I 型异质结,其价带偏移 (ΔEv) 为 2.73-2.84 eV,导带偏移 (ΔEc) 为 2.22-2.11 eV。这种 pn 二极管器件具有线性电流-电压 (I-V) 特性,理想系数为 1.92,整流比高达 3.3 × 104,开启电压为 3.9 V。与温度相关的 I-V 测量结果表明,该器件可在高达 90 °C 的温度下稳定工作。该异质结的高质量界面和令人印象深刻的电气性能突显了它在基于氮化铝的先进光电和电子应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Spectroelectrochemistry study on the surface modification of chalcopyrite by Cu2+ and its depressive response to flotation collector adsorption by negative potential Effect of passivation behavior of SAC305 alloy on the structure and defects of surface oxide film Nanoscale roughness to mitigate polydimethylsiloxane (PDMS) sticking in liquid crystal display (LCD) vat photopolymerization (VPP): Separation force reduction without losing resolution Insight into the mechanism on NO reduction over dual-atom Fe-Cu catalyst supported on N-dopped graphene: A DFT study 3d-orbital overlap modulated d-band center of high-entropy oxyhydroxide for efficient oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1