Chenchen Li, Mengli Li, Wei Gao, Tao Zhang, Zhu Liu, Ming Miao
{"title":"Biosynthesis of Sialyllacto-N-tetraose c in Engineered Escherichia coli","authors":"Chenchen Li, Mengli Li, Wei Gao, Tao Zhang, Zhu Liu, Ming Miao","doi":"10.1021/acs.jafc.4c08711","DOIUrl":null,"url":null,"abstract":"Human milk oligosaccharides (HMOs) have attracted considerable interest for their vital role in supporting infant health. Among these, sialyllacto-<i>N</i>-tetraose c (LST c), a pentasaccharide with the structure Neu5Ac(α2,6)Gal(β1,4)GlcNAc(β1,3)Gal(β1,4)Glc, stands out due to its critical importance in the development and application of complex HMOs. In this study, we employed multivariate modular metabolic engineering (MMME) to screen for efficient sialyltransferases and balance metabolic fluxes, successfully constructing strains capable of LST c biosynthesis. Additionally, by blocking competing pathway genes, enhancing the supply of UDP-GlcNAc and UDP-Gal precursors, and establishing a CTP cofactor regeneration system, we developed a high-yielding <i>Escherichia coli</i> strain, W15. This strain achieved an LST c titer of 220.9 mg/L in shake flask cultures. In a 3-L fed-batch fermentation, the LST c concentration reached 922.2 mg/L, with a productivity of 10.25 mg/L/h and a specific yield of 38.70 mg/g DCW. This research provides an effective strategy for producing LST c in microbial cell factories.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c08711","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable interest for their vital role in supporting infant health. Among these, sialyllacto-N-tetraose c (LST c), a pentasaccharide with the structure Neu5Ac(α2,6)Gal(β1,4)GlcNAc(β1,3)Gal(β1,4)Glc, stands out due to its critical importance in the development and application of complex HMOs. In this study, we employed multivariate modular metabolic engineering (MMME) to screen for efficient sialyltransferases and balance metabolic fluxes, successfully constructing strains capable of LST c biosynthesis. Additionally, by blocking competing pathway genes, enhancing the supply of UDP-GlcNAc and UDP-Gal precursors, and establishing a CTP cofactor regeneration system, we developed a high-yielding Escherichia coli strain, W15. This strain achieved an LST c titer of 220.9 mg/L in shake flask cultures. In a 3-L fed-batch fermentation, the LST c concentration reached 922.2 mg/L, with a productivity of 10.25 mg/L/h and a specific yield of 38.70 mg/g DCW. This research provides an effective strategy for producing LST c in microbial cell factories.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.