{"title":"Electrochemical degradation of aromatic organophosphate esters: Mechanisms, toxicity changes, and ecological risk assessment","authors":"Shaoyu Tang, Zhujun Luo, Linbin Zhu, Yuanyuan Yu, Minghan Zhu, Hua Yin, Lanfang Han, Lei Xu, Junfeng Niu","doi":"10.1016/j.jhazmat.2024.136455","DOIUrl":null,"url":null,"abstract":"Aromatic organophosphate esters (AOPEs), including triphenyl phosphate (TPHP), tricresyl phosphate (TCP), and 2-ethylhexyl diphenyl phosphate (EHDPP), pose significant health and ecological risks. Electrochemical advanced oxidation process (EAOP) is effective in removing refractory pollutants. In this study, the degradation performance and detoxication ability of AOPEs by EAOP were investigated. Hydroxylation, oxidation, and bond cleavage products were identified as major degradation products (DPs) due to the reaction with ·OH and O₂<sup><strong>·</strong>-</sup>. Toxicity assessments using ecological structure activity relationship (ECOSAR) model and flow cytometry (FCM) revealed the cytotoxicity and aquatic toxicity for DPs were significantly decreased. 16S rRNA gene sequencing of sediment exposure to AOPEs and DPs were applied to assess ecological toxicity, and results showed reduced bacterial richness and diversity with EHDPP and TCP, while TPHP slightly enhanced richness. AOPEs and DPs altered bacterial genera involved in carbon, nitrogen, sulfur cycling and organic compound degradation. Bacterial community assembly suggested elevated stochastic processes and reduced ecotoxicity, confirming AOPEs can be effectively detoxified by 10-min EAOP treatment. Molecular ecological network analysis indicated increased complexity and stability of bacterial communities with DPs. These findings comprehensively revealed the toxicity of AOPEs and their DPs and provided the first evidence of effective degradation and detoxification by EAOP from ecotoxicological perspective.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136455","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aromatic organophosphate esters (AOPEs), including triphenyl phosphate (TPHP), tricresyl phosphate (TCP), and 2-ethylhexyl diphenyl phosphate (EHDPP), pose significant health and ecological risks. Electrochemical advanced oxidation process (EAOP) is effective in removing refractory pollutants. In this study, the degradation performance and detoxication ability of AOPEs by EAOP were investigated. Hydroxylation, oxidation, and bond cleavage products were identified as major degradation products (DPs) due to the reaction with ·OH and O₂·-. Toxicity assessments using ecological structure activity relationship (ECOSAR) model and flow cytometry (FCM) revealed the cytotoxicity and aquatic toxicity for DPs were significantly decreased. 16S rRNA gene sequencing of sediment exposure to AOPEs and DPs were applied to assess ecological toxicity, and results showed reduced bacterial richness and diversity with EHDPP and TCP, while TPHP slightly enhanced richness. AOPEs and DPs altered bacterial genera involved in carbon, nitrogen, sulfur cycling and organic compound degradation. Bacterial community assembly suggested elevated stochastic processes and reduced ecotoxicity, confirming AOPEs can be effectively detoxified by 10-min EAOP treatment. Molecular ecological network analysis indicated increased complexity and stability of bacterial communities with DPs. These findings comprehensively revealed the toxicity of AOPEs and their DPs and provided the first evidence of effective degradation and detoxification by EAOP from ecotoxicological perspective.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.