Electrochemical degradation of aromatic organophosphate esters: Mechanisms, toxicity changes, and ecological risk assessment

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2024-11-07 DOI:10.1016/j.jhazmat.2024.136455
Shaoyu Tang, Zhujun Luo, Linbin Zhu, Yuanyuan Yu, Minghan Zhu, Hua Yin, Lanfang Han, Lei Xu, Junfeng Niu
{"title":"Electrochemical degradation of aromatic organophosphate esters: Mechanisms, toxicity changes, and ecological risk assessment","authors":"Shaoyu Tang, Zhujun Luo, Linbin Zhu, Yuanyuan Yu, Minghan Zhu, Hua Yin, Lanfang Han, Lei Xu, Junfeng Niu","doi":"10.1016/j.jhazmat.2024.136455","DOIUrl":null,"url":null,"abstract":"Aromatic organophosphate esters (AOPEs), including triphenyl phosphate (TPHP), tricresyl phosphate (TCP), and 2-ethylhexyl diphenyl phosphate (EHDPP), pose significant health and ecological risks. Electrochemical advanced oxidation process (EAOP) is effective in removing refractory pollutants. In this study, the degradation performance and detoxication ability of AOPEs by EAOP were investigated. Hydroxylation, oxidation, and bond cleavage products were identified as major degradation products (DPs) due to the reaction with ·OH and O₂<sup><strong>·</strong>-</sup>. Toxicity assessments using ecological structure activity relationship (ECOSAR) model and flow cytometry (FCM) revealed the cytotoxicity and aquatic toxicity for DPs were significantly decreased. 16S rRNA gene sequencing of sediment exposure to AOPEs and DPs were applied to assess ecological toxicity, and results showed reduced bacterial richness and diversity with EHDPP and TCP, while TPHP slightly enhanced richness. AOPEs and DPs altered bacterial genera involved in carbon, nitrogen, sulfur cycling and organic compound degradation. Bacterial community assembly suggested elevated stochastic processes and reduced ecotoxicity, confirming AOPEs can be effectively detoxified by 10-min EAOP treatment. Molecular ecological network analysis indicated increased complexity and stability of bacterial communities with DPs. These findings comprehensively revealed the toxicity of AOPEs and their DPs and provided the first evidence of effective degradation and detoxification by EAOP from ecotoxicological perspective.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136455","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aromatic organophosphate esters (AOPEs), including triphenyl phosphate (TPHP), tricresyl phosphate (TCP), and 2-ethylhexyl diphenyl phosphate (EHDPP), pose significant health and ecological risks. Electrochemical advanced oxidation process (EAOP) is effective in removing refractory pollutants. In this study, the degradation performance and detoxication ability of AOPEs by EAOP were investigated. Hydroxylation, oxidation, and bond cleavage products were identified as major degradation products (DPs) due to the reaction with ·OH and O₂·-. Toxicity assessments using ecological structure activity relationship (ECOSAR) model and flow cytometry (FCM) revealed the cytotoxicity and aquatic toxicity for DPs were significantly decreased. 16S rRNA gene sequencing of sediment exposure to AOPEs and DPs were applied to assess ecological toxicity, and results showed reduced bacterial richness and diversity with EHDPP and TCP, while TPHP slightly enhanced richness. AOPEs and DPs altered bacterial genera involved in carbon, nitrogen, sulfur cycling and organic compound degradation. Bacterial community assembly suggested elevated stochastic processes and reduced ecotoxicity, confirming AOPEs can be effectively detoxified by 10-min EAOP treatment. Molecular ecological network analysis indicated increased complexity and stability of bacterial communities with DPs. These findings comprehensively revealed the toxicity of AOPEs and their DPs and provided the first evidence of effective degradation and detoxification by EAOP from ecotoxicological perspective.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
芳香族有机磷酸酯的电化学降解:机理、毒性变化和生态风险评估
芳香族有机磷酸酯(AOPEs),包括磷酸三苯酯(TPHP)、磷酸三甲苯酯(TCP)和磷酸二苯酯(EHDPP),对健康和生态构成重大风险。电化学高级氧化工艺(EAOP)能有效去除难降解污染物。本研究考察了 EAOP 对 AOPEs 的降解性能和解毒能力。由于与-OH和O₂-反应,羟基化、氧化和键裂解产物被确定为主要降解产物(DPs)。利用生态结构活性关系(ECOSAR)模型和流式细胞仪(FCM)进行的毒性评估表明,DPs 的细胞毒性和水生毒性显著降低。采用 16S rRNA 基因测序法对接触 AOPEs 和 DPs 的沉积物进行生态毒性评估,结果表明 EHDPP 和 TCP 会降低细菌的丰富度和多样性,而 TPHP 会略微提高丰富度。AOPEs 和 DPs 改变了参与碳、氮、硫循环和有机化合物降解的细菌属。细菌群落组装表明随机过程增加,生态毒性降低,这证实了 AOPEs 可通过 10 分钟的 EAOP 处理有效解毒。分子生态网络分析表明,DPs 增加了细菌群落的复杂性和稳定性。这些发现全面揭示了 AOPEs 及其 DPs 的毒性,首次从生态毒理学角度证明了 EAOP 能有效降解和解毒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Construction of electron-deficient Co on the nanoarrays enhances absorption and direct electron transfer to accelerate electrochemical nitrate reduction Spatial distribution and migration characteristics of heavy metals at an abandoned industrial site in the Southwest of China Nano-Fe3O4/FeCO3 modified red soil-based biofilter for simultaneous removal of nitrate, phosphate and heavy metals: Optimization, microbial community and possible mechanism Efficient activation of peracetic acid by defect-engineered MoO2-x: Oxygen vacancies and surface Mo(Ⅴ)-mediated electron transfer processes Electrochemical degradation of aromatic organophosphate esters: Mechanisms, toxicity changes, and ecological risk assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1