Humidity tolerant enhanced hydrogen gas sensing using MoSe2-WSe2 heterostructures: An experimental and computational insights

IF 8 1区 化学 Q1 CHEMISTRY, ANALYTICAL Sensors and Actuators B: Chemical Pub Date : 2024-11-07 DOI:10.1016/j.snb.2024.136787
Priyakshi Kalita, Biplob Mondal
{"title":"Humidity tolerant enhanced hydrogen gas sensing using MoSe2-WSe2 heterostructures: An experimental and computational insights","authors":"Priyakshi Kalita, Biplob Mondal","doi":"10.1016/j.snb.2024.136787","DOIUrl":null,"url":null,"abstract":"In recent times, air pollution’s threat to humanity highlights the urgent need for advanced sensors to monitor harmful gases, essential for industrial regulation, gas leak detection, and air quality surveillance. Two-dimensional transition metal dichalcogenides (TMDCs) has garnered noteworthy attention as potential materials for gas sensing. This paper investigates the synthesis and characterization of a heterostructure composed of molybdenum diselenide with tungsten diselenide (MoSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span>-WSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span>) nanomaterials using a liquid phase exfoliation technique and it’s H<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> sensing performance. The material characterisations confirmed the successful exfoliation into a hexagonal sheet-like, nanocrystalline MoSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span>-WSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> nanostructure. The study further assessed the sensor’s response to H<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> gas, for concentrations of 5–25 ppm at room temperature, comparing the performance of MoSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span>-WSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> sensor with a pristine WSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> sensor. The MoSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span>-WSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> sensor outperformed the pristine WSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> sensor with a response of 59.57%, rapid response times and recovery times (16 s and 30 s respectively), low detection limit of 5.55 ppm, good repeatability, and high durability (30 days). Additionally, the impact of humidity was evaluated at 25 ppm H<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> (at relative-humidity from 40% to 90%). The hydrophobic nature of MoSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span>-WSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> (CA = 141.4°) aligns with the first principle studies, showing almost no change in bandgap when exposed to humidity. These findings emphasize the potential of MoSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span>-WSe<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> heterostructure sensors for detecting H<span><span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> in humid conditions, filling a gap in research and advancing gas sensing technology for environmental safety.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2024.136787","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent times, air pollution’s threat to humanity highlights the urgent need for advanced sensors to monitor harmful gases, essential for industrial regulation, gas leak detection, and air quality surveillance. Two-dimensional transition metal dichalcogenides (TMDCs) has garnered noteworthy attention as potential materials for gas sensing. This paper investigates the synthesis and characterization of a heterostructure composed of molybdenum diselenide with tungsten diselenide (MoSe2-WSe2) nanomaterials using a liquid phase exfoliation technique and it’s H2 sensing performance. The material characterisations confirmed the successful exfoliation into a hexagonal sheet-like, nanocrystalline MoSe2-WSe2 nanostructure. The study further assessed the sensor’s response to H2 gas, for concentrations of 5–25 ppm at room temperature, comparing the performance of MoSe2-WSe2 sensor with a pristine WSe2 sensor. The MoSe2-WSe2 sensor outperformed the pristine WSe2 sensor with a response of 59.57%, rapid response times and recovery times (16 s and 30 s respectively), low detection limit of 5.55 ppm, good repeatability, and high durability (30 days). Additionally, the impact of humidity was evaluated at 25 ppm H2 (at relative-humidity from 40% to 90%). The hydrophobic nature of MoSe2-WSe2 (CA = 141.4°) aligns with the first principle studies, showing almost no change in bandgap when exposed to humidity. These findings emphasize the potential of MoSe2-WSe2 heterostructure sensors for detecting H2 in humid conditions, filling a gap in research and advancing gas sensing technology for environmental safety.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 MoSe2-WSe2 异质结构的耐湿增强型氢气传感:实验和计算见解
近来,空气污染对人类的威胁凸显了人们对监测有害气体的先进传感器的迫切需求,这对工业监管、气体泄漏检测和空气质量监测至关重要。作为潜在的气体传感材料,二维过渡金属二钙化物(TMDCs)受到了广泛关注。本文利用液相剥离技术研究了由二硒化钼和二硒化钨(MoSe22-WSe22)组成的异质结构纳米材料的合成、表征及其 H22 传感性能。材料表征证实,MoSe22-WSe22 成功剥离成六边形片状纳米晶体结构。研究进一步评估了传感器在室温下对浓度为 5-25 ppm 的 H22 气体的响应,比较了 MoSe22-WSe22 传感器和原始 WSe22 传感器的性能。MoSe22-WSe22 传感器的响应率为 59.57%,响应时间和恢复时间快(分别为 16 秒和 30 秒),检测限低(5.55 ppm),重复性好,耐用性高(30 天),因此性能优于原始 WSe22 传感器。此外,还评估了湿度对 25 ppm H22 的影响(相对湿度为 40% 至 90%)。MoSe22-WSe22 的疏水性(CA = 141.4°)与第一原理研究结果一致,表明在暴露于湿度时带隙几乎没有变化。这些发现强调了 MoSe22-WSe22 异质结构传感器在潮湿条件下检测 H22 的潜力,填补了研究空白,推动了气体传感技术在环境安全领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors and Actuators B: Chemical
Sensors and Actuators B: Chemical 工程技术-电化学
CiteScore
14.60
自引率
11.90%
发文量
1776
审稿时长
3.2 months
期刊介绍: Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.
期刊最新文献
An ASIC-based system-in-package MEMS gas sensor with impedance spectroscopy readout and AI-enabled identification capabilities In-situ Electrochemical Synthesis of Ni/Ni(OH)2/Molecularly Imprinted Polymer Nanocomposite for High-Performance Glucose Detection Urea-assisted fabrication of defect and oxygen vacancy-enriched Ce(MoO4)2 oxidase mimetics: A dual-mode sensor array for detection and recognition of phenolic antioxidants The preparation of SiO2/GO/PVA based hydrogel sensor and its application for rapid and sensitive detection of NH3 One-pot, real-time monitoring and detection of chemical-producing capability in Escherichia coli using fluorophore-quencher-based aptasensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1