Sophia K. V. Hines, Christopher D. Charles, Aidan Starr, Steven L. Goldstein, Sidney R. Hemming, Ian R. Hall, Nambiyathodi Lathika, Mollie Passacantando, Louise Bolge
{"title":"Revisiting the mid-Pleistocene transition ocean circulation crisis","authors":"Sophia K. V. Hines, Christopher D. Charles, Aidan Starr, Steven L. Goldstein, Sidney R. Hemming, Ian R. Hall, Nambiyathodi Lathika, Mollie Passacantando, Louise Bolge","doi":"10.1126/science.adn4154","DOIUrl":null,"url":null,"abstract":"<div >The mid-Pleistocene transition (MPT) [~1.25 to 0.85 million years ago (Ma)] marks a shift in the character of glacial-interglacial climate (<i>1</i>, <i>2</i>). One prevailing hypothesis for the origin of the MPT is that glacial deep ocean circulation fundamentally changed, marked by a circulation “crisis” at ~0.90 Ma (marine isotope stages 24 to 22) (<i>3</i>). Using high-resolution paired neodymium, carbon, and oxygen isotope data from the South Atlantic Ocean (Cape Basin) across the MPT, we find no evidence of a substantial change in deep ocean circulation. Before and during the early MPT (~1.30 to 1.12 Ma), the glacial deep ocean variability closely resembled that of the most recent glacial cycle. The carbon storage facilitated by developing deep ocean stratification across the MPT required only modest circulation adjustments.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"386 6722","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adn4154","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The mid-Pleistocene transition (MPT) [~1.25 to 0.85 million years ago (Ma)] marks a shift in the character of glacial-interglacial climate (1, 2). One prevailing hypothesis for the origin of the MPT is that glacial deep ocean circulation fundamentally changed, marked by a circulation “crisis” at ~0.90 Ma (marine isotope stages 24 to 22) (3). Using high-resolution paired neodymium, carbon, and oxygen isotope data from the South Atlantic Ocean (Cape Basin) across the MPT, we find no evidence of a substantial change in deep ocean circulation. Before and during the early MPT (~1.30 to 1.12 Ma), the glacial deep ocean variability closely resembled that of the most recent glacial cycle. The carbon storage facilitated by developing deep ocean stratification across the MPT required only modest circulation adjustments.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.