Total synthesis of (−)-cylindrocyclophane A facilitated by C−H functionalization

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2024-11-07 DOI:10.1126/science.adp2425
Aaron T. Bosse, Liam R. Hunt, Camila A. Suarez, Tyler D. Casselman, Elizabeth L. Goldstein, Austin C. Wright, Hojoon Park, Scott C. Virgil, Jin-Quan Yu, Brian M. Stoltz, Huw M. L. Davies
{"title":"Total synthesis of (−)-cylindrocyclophane A facilitated by C−H functionalization","authors":"Aaron T. Bosse, Liam R. Hunt, Camila A. Suarez, Tyler D. Casselman, Elizabeth L. Goldstein, Austin C. Wright, Hojoon Park, Scott C. Virgil, Jin-Quan Yu, Brian M. Stoltz, Huw M. L. Davies","doi":"10.1126/science.adp2425","DOIUrl":null,"url":null,"abstract":"(−)-Cylindrocyclophane A is a 22-membered C <jats:sub>2</jats:sub> -symmetric [7.7]paracyclophane that bears bis-resorcinol functionality and six stereocenters. We report a synthetic strategy for (−)-cylindrocyclophane A that uses 10 C−H functionalization reactions, resulting in a streamlined route with high enantioselectivity and efficiency (17 steps). The use of chiral dirhodium tetracarboxylate catalysis enabled the C–H functionalization of primary and secondary positions, which was complemented by palladium-catalyzed C(sp <jats:sup>2</jats:sup> )–C(sp <jats:sup>2</jats:sup> ) cross-couplings, resulting in the rapid formation of the macrocyclic core and all stereocenters with high regio-, diastereo-, and enantioselectivity. The use of a late-stage palladium-catalyzed fourfold C(sp <jats:sup>2</jats:sup> )–H acetoxylation installed the bis-resorcinol moieties. This research exemplifies how multilaboratory collaborations can produce substantial modernizations of complex total synthesis endeavors.","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adp2425","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

(−)-Cylindrocyclophane A is a 22-membered C 2 -symmetric [7.7]paracyclophane that bears bis-resorcinol functionality and six stereocenters. We report a synthetic strategy for (−)-cylindrocyclophane A that uses 10 C−H functionalization reactions, resulting in a streamlined route with high enantioselectivity and efficiency (17 steps). The use of chiral dirhodium tetracarboxylate catalysis enabled the C–H functionalization of primary and secondary positions, which was complemented by palladium-catalyzed C(sp 2 )–C(sp 2 ) cross-couplings, resulting in the rapid formation of the macrocyclic core and all stereocenters with high regio-, diastereo-, and enantioselectivity. The use of a late-stage palladium-catalyzed fourfold C(sp 2 )–H acetoxylation installed the bis-resorcinol moieties. This research exemplifies how multilaboratory collaborations can produce substantial modernizations of complex total synthesis endeavors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 C-H 功能化促进 (-)-cylindrocyclophane A 的全合成
(-)-Cylindrocyclophane A 是一种 22 元 C 2 - 不对称 [7.7]paracyclophane,具有双间苯二酚官能团和六个立体中心。我们报告了一种 (-)-cylindrocyclophane A 的合成策略,该策略使用了 10 个 C-H 官能化反应,形成了一条具有高对映选择性和高效率(17 个步骤)的简化路线。使用手性四羧酸二氢铑催化实现了一级和二级位置的 C-H 功能化,再辅以钯催化的 C(sp 2 )-C(sp 2 ) 交叉耦合,从而以高区域、非对映和对映选择性快速形成了大环核心和所有立体中心。后期使用钯催化的四重 C(sp 2 )-H 乙酰氧基化反应安装了双间苯二酚分子。这项研究体现了多实验室合作如何使复杂的全合成工作实现实质性的现代化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
Continuous evolution of user-defined genes at 1 million times the genomic mutation rate COP29’s climate investment imperative Activation of a helper NLR by plant and bacterial TIR immune signaling Merged-nets enumeration for the systematic design of multicomponent reticular structures Analysis methods for large-scale neuronal recordings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1