Alessandro Lella, Francesca Calore, Pierluca Carenza, Christopher Eckner, Maurizio Giannotti, Giuseppe Lucente and Alessandro Mirizzi
{"title":"Probing protoneutron stars with gamma-ray axionscopes","authors":"Alessandro Lella, Francesca Calore, Pierluca Carenza, Christopher Eckner, Maurizio Giannotti, Giuseppe Lucente and Alessandro Mirizzi","doi":"10.1088/1475-7516/2024/11/009","DOIUrl":null,"url":null,"abstract":"Axion-like particles (ALPs) coupled to nucleons can be efficiently produced in the interior of protoneutron stars (PNS) during supernova (SN) explosions. If these ALPs are also coupled to photons they can convert into gamma rays in the Galactic magnetic field. This SN-induced gamma-ray burst can be observable by gamma-ray telescopes like Fermi-LAT if the SN is in the field of view of the detector. We show that the observable gamma-ray spectrum is sensitive to the production processes in the SN core. In particular, if the nucleon-nucleon bremsstrahlung is the dominant axion production channel, one expects a thermal spectrum with average energy Ea ≃ 50 MeV. In this case the gamma-ray spectrum observation allows for the reconstruction of the PNS temperature. In case of a sizable pion abundance in the SN core, one expects a second spectral component peaked at Ea ≃ 200 MeV due to axion pionic processes. We demonstrate that, through a dedicated LAT analysis, we can detect the presence of this pionic contribution, showing that the detection of the spectral shape of the gamma-ray signal represents a unique probe of the pion abundance in the PNS.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"68 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/11/009","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Axion-like particles (ALPs) coupled to nucleons can be efficiently produced in the interior of protoneutron stars (PNS) during supernova (SN) explosions. If these ALPs are also coupled to photons they can convert into gamma rays in the Galactic magnetic field. This SN-induced gamma-ray burst can be observable by gamma-ray telescopes like Fermi-LAT if the SN is in the field of view of the detector. We show that the observable gamma-ray spectrum is sensitive to the production processes in the SN core. In particular, if the nucleon-nucleon bremsstrahlung is the dominant axion production channel, one expects a thermal spectrum with average energy Ea ≃ 50 MeV. In this case the gamma-ray spectrum observation allows for the reconstruction of the PNS temperature. In case of a sizable pion abundance in the SN core, one expects a second spectral component peaked at Ea ≃ 200 MeV due to axion pionic processes. We demonstrate that, through a dedicated LAT analysis, we can detect the presence of this pionic contribution, showing that the detection of the spectral shape of the gamma-ray signal represents a unique probe of the pion abundance in the PNS.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.