Ultrafast all-optical coherence of molecular electron spins in room-temperature water solution

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2024-11-07 DOI:10.1126/science.ads0512
Erica Sutcliffe, Nathanael P. Kazmierczak, Ryan G. Hadt
{"title":"Ultrafast all-optical coherence of molecular electron spins in room-temperature water solution","authors":"Erica Sutcliffe, Nathanael P. Kazmierczak, Ryan G. Hadt","doi":"10.1126/science.ads0512","DOIUrl":null,"url":null,"abstract":"The tunability and spatial precision of paramagnetic molecules makes them attractive for quantum sensing. However, usual microwave-based detection methods have poor temporal and spatial resolution, and optical methods compatible with room-temperature solutions have remained elusive. Here, we utilized pump-probe polarization spectroscopy to initialize and track electron spin coherence in a molecule. Designed to efficiently couple spins to light, aqueous K <jats:sub>2</jats:sub> IrCl <jats:sub>6</jats:sub> enabled detection of few-picosecond free induction decay at room temperature and micromolar concentrations. Viscosity was found to strongly vary decoherence lifetimes. This approach has improved the experimental time-resolution by up to five orders of magnitude, making it possible to observe molecular electron spin coherence in a system that only exhibits coherence below 25 K with traditional techniques.","PeriodicalId":21678,"journal":{"name":"Science","volume":"28 1","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.ads0512","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The tunability and spatial precision of paramagnetic molecules makes them attractive for quantum sensing. However, usual microwave-based detection methods have poor temporal and spatial resolution, and optical methods compatible with room-temperature solutions have remained elusive. Here, we utilized pump-probe polarization spectroscopy to initialize and track electron spin coherence in a molecule. Designed to efficiently couple spins to light, aqueous K 2 IrCl 6 enabled detection of few-picosecond free induction decay at room temperature and micromolar concentrations. Viscosity was found to strongly vary decoherence lifetimes. This approach has improved the experimental time-resolution by up to five orders of magnitude, making it possible to observe molecular electron spin coherence in a system that only exhibits coherence below 25 K with traditional techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室温水溶液中分子电子自旋的超快全光相干性
顺磁分子的可调谐性和空间精度使其对量子传感具有吸引力。然而,基于微波的常规探测方法的时间和空间分辨率较低,而与室温解决方案兼容的光学方法仍然难以实现。在这里,我们利用泵浦探针偏振光谱学来初始化和跟踪分子中的电子自旋相干性。K 2 IrCl 6 水溶液设计用于将自旋与光有效耦合,可在室温和微摩尔浓度下检测几皮秒的自由感应衰减。研究发现,粘度会强烈改变退相干寿命。这种方法将实验时间分辨率提高了 5 个数量级,从而有可能观察到分子电子自旋相干性,而传统技术只能在 25 K 以下显示相干性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
Reconstruction of the human amylase locus reveals ancient duplications seeding modern-day variation. Shades of blue. Ship collision risk threatens whales across the world's oceans. Small wetlands: Critical to flood management. Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1