Deep Reinforcement Learning Based Optimization of Microwave Microfluidic Sensor

0 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE microwave and wireless technology letters Pub Date : 2024-09-24 DOI:10.1109/LMWT.2024.3462767
Jia-Hao Pan;Wen-Jing Wu;Qi Qiang Liu;Wen-Sheng Zhao;Da-Wei Wang;Xiaoping Hu;Yue Hu;Jing Wang;Jun Liu;Lingling Sun
{"title":"Deep Reinforcement Learning Based Optimization of Microwave Microfluidic Sensor","authors":"Jia-Hao Pan;Wen-Jing Wu;Qi Qiang Liu;Wen-Sheng Zhao;Da-Wei Wang;Xiaoping Hu;Yue Hu;Jing Wang;Jun Liu;Lingling Sun","doi":"10.1109/LMWT.2024.3462767","DOIUrl":null,"url":null,"abstract":"The resonant structure of microwave microfluidic sensors is crucial to their performance. However, traditional manual design methods rely heavily on expert experience and extensive parameter tuning, making it difficult to achieve optimal performance. Thus, there is an urgent need for an automatic design method for resonant structures. This letter proposes a topology optimization method based on deep reinforcement learning (DRL) to optimize the resonant cavity structure within the sensor. The optimization algorithm uses a reward strategy to obtain the optimal structure, increasing the relative frequency shift of the sensor from 0.4 to 0.658, thereby enhancing sensitivity by 64.5%. Experimental results demonstrate that this method can effectively improve the sensitivity of microwave microfluidic sensors and exhibit robustness and versatility.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 11","pages":"1309-1312"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10691891/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The resonant structure of microwave microfluidic sensors is crucial to their performance. However, traditional manual design methods rely heavily on expert experience and extensive parameter tuning, making it difficult to achieve optimal performance. Thus, there is an urgent need for an automatic design method for resonant structures. This letter proposes a topology optimization method based on deep reinforcement learning (DRL) to optimize the resonant cavity structure within the sensor. The optimization algorithm uses a reward strategy to obtain the optimal structure, increasing the relative frequency shift of the sensor from 0.4 to 0.658, thereby enhancing sensitivity by 64.5%. Experimental results demonstrate that this method can effectively improve the sensitivity of microwave microfluidic sensors and exhibit robustness and versatility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的微波微流体传感器优化
微波微流控传感器的谐振结构对其性能至关重要。然而,传统的手动设计方法严重依赖专家经验和大量参数调整,很难达到最佳性能。因此,迫切需要一种自动设计谐振结构的方法。本文提出了一种基于深度强化学习(DRL)的拓扑优化方法,用于优化传感器内的谐振腔结构。该优化算法采用奖励策略获得最佳结构,将传感器的相对频移从 0.4 增加到 0.658,从而将灵敏度提高了 64.5%。实验结果表明,该方法能有效提高微波微流控传感器的灵敏度,并具有鲁棒性和多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Open Access Publishing IEEE Microwave and Wireless Technology Letters publication IEEE Microwave and Wireless Technology Letters Information for Authors TechRxiv: Share Your Preprint Research with the World
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1