{"title":"MaskedHLS: Domain-Specific High-Level Synthesis of Masked Cryptographic Designs","authors":"Nilotpola Sarma;Anuj Singh Thakur;Chandan Karfa","doi":"10.1109/TCAD.2024.3447223","DOIUrl":null,"url":null,"abstract":"The design and synthesis of masked cryptographic hardware implementations that are secure against power side-channel attacks (PSCAs) in the presence of glitches is a challenging task. High-level synthesis (HLS) is a promising technique for generating masked hardware directly from masked software, offering opportunities for design space exploration. However, conventional HLS tools make modifications that alter the guarantee against PSCA security via masking, resulting in an insecure register transfer level (RTL). Moreover, existing HLS tools cannot place registers at designated places and balance parallel paths in a masked cryptographic design. This is necessary to stop the propagation glitches that may hamper PSCA-security. This article introduces a domain-specific HLS tool tailored to obtain a PSCA secure masked hardware implementation directly from a masked software implementation. This tool places registers at specific locations required by the glitch-robust masking gadgets, resulting in a secure RTL. Furthermore, it automatically balances parallel paths and facilitates a reduction in latency while preserving the PSCA security guaranteed by masking. Experimental results with the PRESENT Cipher’s S-box and AES Canright’s S-box masked with four state-of-the-art gadgets, show that MaskedHLS produces RTLs with 73.9% decrease in registers and 45.7% decrease in latency on an average compared to manual register insertions. The PSCA security of MaskedHLS generated RTLs is also shown with TVLA test.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"3973-3984"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745861/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The design and synthesis of masked cryptographic hardware implementations that are secure against power side-channel attacks (PSCAs) in the presence of glitches is a challenging task. High-level synthesis (HLS) is a promising technique for generating masked hardware directly from masked software, offering opportunities for design space exploration. However, conventional HLS tools make modifications that alter the guarantee against PSCA security via masking, resulting in an insecure register transfer level (RTL). Moreover, existing HLS tools cannot place registers at designated places and balance parallel paths in a masked cryptographic design. This is necessary to stop the propagation glitches that may hamper PSCA-security. This article introduces a domain-specific HLS tool tailored to obtain a PSCA secure masked hardware implementation directly from a masked software implementation. This tool places registers at specific locations required by the glitch-robust masking gadgets, resulting in a secure RTL. Furthermore, it automatically balances parallel paths and facilitates a reduction in latency while preserving the PSCA security guaranteed by masking. Experimental results with the PRESENT Cipher’s S-box and AES Canright’s S-box masked with four state-of-the-art gadgets, show that MaskedHLS produces RTLs with 73.9% decrease in registers and 45.7% decrease in latency on an average compared to manual register insertions. The PSCA security of MaskedHLS generated RTLs is also shown with TVLA test.
期刊介绍:
The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.