{"title":"VALO: A Versatile Anytime Framework for LiDAR-Based Object Detection Deep Neural Networks","authors":"Ahmet Soyyigit;Shuochao Yao;Heechul Yun","doi":"10.1109/TCAD.2024.3443774","DOIUrl":null,"url":null,"abstract":"This work addresses the challenge of adapting dynamic deadline requirements for the LiDAR object detection deep neural networks (DNNs). The computing latency of object detection is critically important to ensure safe and efficient navigation. However, the state-of-the-art LiDAR object detection DNNs often exhibit significant latency, hindering their real-time performance on the resource-constrained edge platforms. Therefore, a tradeoff between the detection accuracy and latency should be dynamically managed at runtime to achieve the optimum results. In this article, we introduce versatile anytime algorithm for the LiDAR Object detection (VALO), a novel data-centric approach that enables anytime computing of 3-D LiDAR object detection DNNs. VALO employs a deadline-aware scheduler to selectively process the input regions, making execution time and accuracy tradeoffs without architectural modifications. Additionally, it leverages efficient forecasting of the past detection results to mitigate possible loss of accuracy due to partial processing of input. Finally, it utilizes a novel input reduction technique within its detection heads to significantly accelerate the execution without sacrificing accuracy. We implement VALO on the state-of-the-art 3-D LiDAR object detection networks, namely CenterPoint and VoxelNext, and demonstrate its dynamic adaptability to a wide range of time constraints while achieving higher accuracy than the prior state-of-the-art. Code is available at \n<uri>https://github.com/CSL-KU/VALOgithub.com/CSL-KU/VALO</uri>\n.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"4045-4056"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745847/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This work addresses the challenge of adapting dynamic deadline requirements for the LiDAR object detection deep neural networks (DNNs). The computing latency of object detection is critically important to ensure safe and efficient navigation. However, the state-of-the-art LiDAR object detection DNNs often exhibit significant latency, hindering their real-time performance on the resource-constrained edge platforms. Therefore, a tradeoff between the detection accuracy and latency should be dynamically managed at runtime to achieve the optimum results. In this article, we introduce versatile anytime algorithm for the LiDAR Object detection (VALO), a novel data-centric approach that enables anytime computing of 3-D LiDAR object detection DNNs. VALO employs a deadline-aware scheduler to selectively process the input regions, making execution time and accuracy tradeoffs without architectural modifications. Additionally, it leverages efficient forecasting of the past detection results to mitigate possible loss of accuracy due to partial processing of input. Finally, it utilizes a novel input reduction technique within its detection heads to significantly accelerate the execution without sacrificing accuracy. We implement VALO on the state-of-the-art 3-D LiDAR object detection networks, namely CenterPoint and VoxelNext, and demonstrate its dynamic adaptability to a wide range of time constraints while achieving higher accuracy than the prior state-of-the-art. Code is available at
https://github.com/CSL-KU/VALOgithub.com/CSL-KU/VALO
.
期刊介绍:
The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.