Qicheng He, Zhihao Zhang, Quanxi Zhang and Zhifeng Zhang
{"title":"Synergistic modulation of BiOI by atomic-level vacancies and dominant facets for efficient photocatalytic degradation of bisphenol A†","authors":"Qicheng He, Zhihao Zhang, Quanxi Zhang and Zhifeng Zhang","doi":"10.1039/D4TC02536A","DOIUrl":null,"url":null,"abstract":"<p >Precise control of desirable facets and vacancies is expected to be a promising strategy for improving the photocatalytic performance of catalysts. Herein, BiOI-1 and BiOI-2 were designed and prepared with (102) and (110) as the dominant exposed facets, respectively. Moreover, BiOI-1 and BiOI-2 correspond to the major types <em>V</em><small><sub>BiIBi</sub></small> and <em>V</em><small><sub>BiOBiBi</sub></small>, respectively. The experimental results showed that the degradation and mineralization of bisphenol A (BPA) by BiOI-2 could reach 100% and 95.90% under visible light irradiation. The excellent catalytic performance of BiOI-2 is attributed to the optimization of the energy band structure by its special facets and vacancies, and the narrow band gap promotes the separation of photogenerated electron–hole pairs. Meanwhile, the strong reducing property of the conduction band (CB) and the strong adsorption capacity for water and oxygen contribute to the fact that BiOI-2 can generate a large amount of reactive oxygen species (ROS). This work provides an atomic-scale understanding of the synergistic effects of vacancies and facets on catalysts and offers new directions in the management of water environmental pollution.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02536a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Precise control of desirable facets and vacancies is expected to be a promising strategy for improving the photocatalytic performance of catalysts. Herein, BiOI-1 and BiOI-2 were designed and prepared with (102) and (110) as the dominant exposed facets, respectively. Moreover, BiOI-1 and BiOI-2 correspond to the major types VBiIBi and VBiOBiBi, respectively. The experimental results showed that the degradation and mineralization of bisphenol A (BPA) by BiOI-2 could reach 100% and 95.90% under visible light irradiation. The excellent catalytic performance of BiOI-2 is attributed to the optimization of the energy band structure by its special facets and vacancies, and the narrow band gap promotes the separation of photogenerated electron–hole pairs. Meanwhile, the strong reducing property of the conduction band (CB) and the strong adsorption capacity for water and oxygen contribute to the fact that BiOI-2 can generate a large amount of reactive oxygen species (ROS). This work provides an atomic-scale understanding of the synergistic effects of vacancies and facets on catalysts and offers new directions in the management of water environmental pollution.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.