{"title":"Self-Induced Displacement and Rotation of a Melting Ice Disk on the Still Water Surface","authors":"A. V. Kistovich, T. O. Chaplina","doi":"10.1134/S0015462824603061","DOIUrl":null,"url":null,"abstract":"<p>The results of an experimental investigation and physical modeling of self-induced displacement and rotation of an ice disk on the still water surface are presented. The dependence of the ice specimen rotation velocity on the water salinity and the depth of the experimental container is measured. It is shown that the reason for observable motions over the still water surface is the cellular convective flow generated by the ice melting process.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 4","pages":"653 - 662"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824603061","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The results of an experimental investigation and physical modeling of self-induced displacement and rotation of an ice disk on the still water surface are presented. The dependence of the ice specimen rotation velocity on the water salinity and the depth of the experimental container is measured. It is shown that the reason for observable motions over the still water surface is the cellular convective flow generated by the ice melting process.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.