K. K. Shen, G. F. Jin, X. M. Lv, Y. Z. Huang, Y. Jia, M. N. Gao
{"title":"Preparation of a Stable Super-Amphiphobic Coating via a Simple Sol–Gel Method","authors":"K. K. Shen, G. F. Jin, X. M. Lv, Y. Z. Huang, Y. Jia, M. N. Gao","doi":"10.1134/S1061933X24600301","DOIUrl":null,"url":null,"abstract":"<p>It is well known that super-hydrophobic materials have a wide application prospect. However, many methods for preparing super-amphiphobic coatings are too complicated or have poor stability, which limits the practical application of super-amphiphobic materials. In this paper, a stable and durable super-amphiphobic coating is prepared on the fabric surface via a simple sol-gel method. The water and vegetable oil contact angles of this coating are 160.5 ± 0.8° and 154.8 ± 2.6°, respectively. Specifically, the super-amphiphobic coating is prepared by grafting nano-silica on the surface of the fabric by a simple sol-gel method, and then grafted 1H, 1H,2H,2H-perfluorodecyltrimethoxysilane (FAS-17) as a hydrophobic modifier. After various chemical and mechanical stability tests, including concentrated ammonia solution soaking, saturated sodium hydroxide solution soaking, concentrated salt solution soaking, and THF soaking with stirring, the coating still maintains hydrophobicity. And the coating has excellent air permeability, which is expected to have great potential in the field of special protection.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"86 5","pages":"803 - 813"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X24600301","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that super-hydrophobic materials have a wide application prospect. However, many methods for preparing super-amphiphobic coatings are too complicated or have poor stability, which limits the practical application of super-amphiphobic materials. In this paper, a stable and durable super-amphiphobic coating is prepared on the fabric surface via a simple sol-gel method. The water and vegetable oil contact angles of this coating are 160.5 ± 0.8° and 154.8 ± 2.6°, respectively. Specifically, the super-amphiphobic coating is prepared by grafting nano-silica on the surface of the fabric by a simple sol-gel method, and then grafted 1H, 1H,2H,2H-perfluorodecyltrimethoxysilane (FAS-17) as a hydrophobic modifier. After various chemical and mechanical stability tests, including concentrated ammonia solution soaking, saturated sodium hydroxide solution soaking, concentrated salt solution soaking, and THF soaking with stirring, the coating still maintains hydrophobicity. And the coating has excellent air permeability, which is expected to have great potential in the field of special protection.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.