Moiré-regulated composition evolution kinetics of bicomponent nanoclusters

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Nanoparticle Research Pub Date : 2024-11-06 DOI:10.1007/s11051-024-06171-4
Mikhail Khenner
{"title":"Moiré-regulated composition evolution kinetics of bicomponent nanoclusters","authors":"Mikhail Khenner","doi":"10.1007/s11051-024-06171-4","DOIUrl":null,"url":null,"abstract":"<div><p>A simple model and computation of Moiré-regulated composition evolution kinetics of bicomponent nanoclusters is presented. Assuming continuous adsorbate coverage on top of 2D bilayer and Moiré potential-driven nanocluster formation at fcc sites of Moiré landscape, these sites experience the influx of one component of a bicomponent adsorbate and the outflux of another component. Kinetics of this process is characterized for several combinations of adsorption potentials and their relative strengths.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06171-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A simple model and computation of Moiré-regulated composition evolution kinetics of bicomponent nanoclusters is presented. Assuming continuous adsorbate coverage on top of 2D bilayer and Moiré potential-driven nanocluster formation at fcc sites of Moiré landscape, these sites experience the influx of one component of a bicomponent adsorbate and the outflux of another component. Kinetics of this process is characterized for several combinations of adsorption potentials and their relative strengths.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双组分纳米团簇的莫伊里调控成分演变动力学
本文提出了双组分纳米团簇的莫伊雷调控成分演变动力学的简单模型和计算方法。假定二维双分子层顶部有连续的吸附剂覆盖,莫伊里电位驱动纳米团簇在莫伊里地貌的 fcc 位点形成,这些位点会经历双组分吸附剂中一种组分的流入和另一种组分的流出。针对几种吸附电位组合及其相对强度,研究了这一过程的动力学特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
期刊最新文献
Computational insights into metals (Ni, Pt, Pd) decorated Si-doped graphene/boron nitride hybrids for enhanced carbaryl gas (C12H11NO2) adsorption Controlled nanorod-like structure of iron tetrapolyvanadate for enhanced heterogeneous Fenton-like catalysis Cholic acid-mediated targeting of mRNA-LNPs improve the mRNA delivery to Caco-2 cells An ingenious strategy for construction of B, N Co-doped nanoporous carbon toward room-temperature adsorption and activation of formaldehyde Optimizing nanosilver for implant success: from marketing hype to medical reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1