Creation of Hydrophilic Organosilicon Coatings and Study of Their Resistance to Factors Accompanying Corona Discharge

IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Colloid Journal Pub Date : 2024-11-06 DOI:10.1134/S1061933X24600842
K. A. Emelyanenko, O. A. Ryabkova, N. Denman
{"title":"Creation of Hydrophilic Organosilicon Coatings and Study of Their Resistance to Factors Accompanying Corona Discharge","authors":"K. A. Emelyanenko,&nbsp;O. A. Ryabkova,&nbsp;N. Denman","doi":"10.1134/S1061933X24600842","DOIUrl":null,"url":null,"abstract":"<p>Modern power industry widely uses high-voltage overhead lines to transport electrical energy, with these lines encountering the problems of corona discharge and leakage currents, especially under the conditions of rain and snowfall. One of the approaches to solving these problems is the creation of protective coatings that can diminish corona discharge under adverse weather conditions. This paper reports the results of studying a hydrophilic organosilicon coating based on aminopropyltriethoxysilane and poly(ethylene glycol) for aluminum wires. The study of the coating resistance to a long-term contact with water, UV radiation, and ozone-saturated atmosphere has shown that the hydrophilicity of the coating increases under the influence of these factors, thus improving its anticorona properties. Thus, the durability of the developed coating under the operating conditions opens prospects for its use in the power engineering.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"86 5","pages":"699 - 704"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X24600842","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Modern power industry widely uses high-voltage overhead lines to transport electrical energy, with these lines encountering the problems of corona discharge and leakage currents, especially under the conditions of rain and snowfall. One of the approaches to solving these problems is the creation of protective coatings that can diminish corona discharge under adverse weather conditions. This paper reports the results of studying a hydrophilic organosilicon coating based on aminopropyltriethoxysilane and poly(ethylene glycol) for aluminum wires. The study of the coating resistance to a long-term contact with water, UV radiation, and ozone-saturated atmosphere has shown that the hydrophilicity of the coating increases under the influence of these factors, thus improving its anticorona properties. Thus, the durability of the developed coating under the operating conditions opens prospects for its use in the power engineering.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制作亲水性有机硅涂层并研究其抗电晕放电因素的能力
现代电力行业广泛使用高压架空线路输送电能,这些线路会遇到电晕放电和泄漏电流的问题,尤其是在降雨和降雪的情况下。解决这些问题的方法之一是制作保护涂层,以减少恶劣天气条件下的电晕放电。本文报告了一种基于氨基丙基三乙氧基硅烷和聚乙二醇的亲水性有机硅涂层的研究结果。对涂层与水、紫外线辐射和臭氧饱和大气长期接触的耐受性研究表明,在这些因素的影响下,涂层的亲水性增加,从而提高了其抗电晕性能。因此,所开发涂层在工作条件下的耐久性为其在电力工程中的应用开辟了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Colloid Journal
Colloid Journal 化学-物理化学
CiteScore
2.20
自引率
18.20%
发文量
36
审稿时长
6-12 weeks
期刊介绍: Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.
期刊最新文献
Influence of Dispersion Medium and Precipitating Agent on Sol and Gel Formation of Lead Zirconate-titanate Ceramic Precursor Determination of Limits for Evaluating the Degree of Internalization of γ-Fe2O3 Nanoparticles by Cultures of Human Mesenchymal Stomal Cells Influence of Multivalent Ions on the Electrosurface Properties of Tungsten(VI) Oxide Particles in Hydrosols Bulk Vapor Condensation upon Intensive Evaporation from Interfacial Surface Influence of Iron Cations on Tetraethoxysilane Hydrolysis and Gelation Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1