{"title":"Active vibration control and optimal position of MFC actuator for the bistable laminates with four points simply support","authors":"Y. X. Hao, J. Cao, W. Zhang","doi":"10.1007/s00419-024-02697-0","DOIUrl":null,"url":null,"abstract":"<div><p>Bistable laminates (BSLs) are prone to vibration and dynamical snap-through behavior (STB) under the action of external environment. To control them, active vibration control using smart material is a terrific choice because it can minimize the impact on the stable configuration and properties of bistable laminate. This paper focuses on the active vibration control of rectangular asymmetric and anti-symmetric cross-ply bistable laminates under impact loadings using piezoelectric macro-fiber composite (MFC) whose size and position of paste are optimized instead of pasting randomly or middle of the laminate. The bistable laminated structures are simply supported at four selected points, while all the edges of them are free. With the aid of energy principle, governing equations of vibration of the bistable laminated structure are acquired with regard to two principal curvatures. The accuracy and validation of present formulation are verified by comparison studies of stable configurations and snap-through voltage of MFC. Then, the positions and geometric dimensions of piezoelectric macro-fibers are optimized by using genetic algorithm. The active vibration control of the bistable laminated structures subjected to step loading, decreasing loading, increasing loading and sinusoidal loading is studied for various control gains, geometries and different simply supported points.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 12","pages":"3825 - 3847"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02697-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bistable laminates (BSLs) are prone to vibration and dynamical snap-through behavior (STB) under the action of external environment. To control them, active vibration control using smart material is a terrific choice because it can minimize the impact on the stable configuration and properties of bistable laminate. This paper focuses on the active vibration control of rectangular asymmetric and anti-symmetric cross-ply bistable laminates under impact loadings using piezoelectric macro-fiber composite (MFC) whose size and position of paste are optimized instead of pasting randomly or middle of the laminate. The bistable laminated structures are simply supported at four selected points, while all the edges of them are free. With the aid of energy principle, governing equations of vibration of the bistable laminated structure are acquired with regard to two principal curvatures. The accuracy and validation of present formulation are verified by comparison studies of stable configurations and snap-through voltage of MFC. Then, the positions and geometric dimensions of piezoelectric macro-fibers are optimized by using genetic algorithm. The active vibration control of the bistable laminated structures subjected to step loading, decreasing loading, increasing loading and sinusoidal loading is studied for various control gains, geometries and different simply supported points.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.