{"title":"In-medium gluon radiation spectrum with all-order resummation of multiple scatterings in longitudinally evolving media","authors":"Carlota Andres, Liliana Apolinário, Fabio Dominguez, Marcos Gonzalez Martinez","doi":"10.1007/JHEP11(2024)025","DOIUrl":null,"url":null,"abstract":"<p>Over the past years, there has been a sustained effort to systematically enhance our understanding of medium-induced emissions occurring in the quark-gluon plasma, driven by the ultimate goal of advancing our comprehension of jet quenching phenomena. To ensure meaningful comparisons between these new calculations and experimental data, it becomes crucial to model the interplay between the radiation process and the evolution of the medium parameters, typically described by a hydrodynamical simulation. This step presents particular challenges when dealing with calculations involving the resummation of multiple scatterings, which have been shown to be necessary for achieving an accurate description of the in-medium emission process. In this paper, we extend our numerical calculations of the fully-resummed gluon spectrum to account for longitudinally expanding media. This new implementation allows us to quantitatively assess the accuracy of previously proposed <i>scaling laws</i> that establish a correspondence between an expanding medium and a “static equivalent”. Additionally, we show that such scaling laws yield significantly improved results when the static reference case is replaced by an expanding medium with the temperature following a simple power-law decay. Such correspondence will enable the application of numerical calculations of medium-induced energy loss in realistic evolving media for a broader range of phenomenological studies.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)025.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)025","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past years, there has been a sustained effort to systematically enhance our understanding of medium-induced emissions occurring in the quark-gluon plasma, driven by the ultimate goal of advancing our comprehension of jet quenching phenomena. To ensure meaningful comparisons between these new calculations and experimental data, it becomes crucial to model the interplay between the radiation process and the evolution of the medium parameters, typically described by a hydrodynamical simulation. This step presents particular challenges when dealing with calculations involving the resummation of multiple scatterings, which have been shown to be necessary for achieving an accurate description of the in-medium emission process. In this paper, we extend our numerical calculations of the fully-resummed gluon spectrum to account for longitudinally expanding media. This new implementation allows us to quantitatively assess the accuracy of previously proposed scaling laws that establish a correspondence between an expanding medium and a “static equivalent”. Additionally, we show that such scaling laws yield significantly improved results when the static reference case is replaced by an expanding medium with the temperature following a simple power-law decay. Such correspondence will enable the application of numerical calculations of medium-induced energy loss in realistic evolving media for a broader range of phenomenological studies.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).