D. V. Fursaev, E. A. Davydov, I. G. Pirozhenko, V. A. Tainov
{"title":"Perturbations of classical fields by gravitational shockwaves","authors":"D. V. Fursaev, E. A. Davydov, I. G. Pirozhenko, V. A. Tainov","doi":"10.1007/JHEP11(2024)039","DOIUrl":null,"url":null,"abstract":"<p>Gravitational shockwaves are geometries where components of the transverse curvature have abrupt behaviour across null hypersurfaces, which are fronts of the waves. We develop a general approach to describe classical field theories on such geometries in a linearized approximation, by using free scalar fields as a model. Perturbations caused by shockwaves exist above the wave front and are solutions to a characteristic Cauchy problem with initial data on the wave front determined by a supertranslation of ingoing fields. A special attention is paid to perturbations of fields of point-like sources generated by plane-fronted gravitational shockwaves. One has three effects: conversion of non-stationary perturbations into an outgoing radiation, a spherical scalar shockwave which appears when the gravitational wave hits the source, and a plane scalar shockwave accompanying the initial gravitational wave. Our analysis is applicable to gravitational shockwaves of a general class including geometries sourced by null particles and null branes.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)039.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)039","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Gravitational shockwaves are geometries where components of the transverse curvature have abrupt behaviour across null hypersurfaces, which are fronts of the waves. We develop a general approach to describe classical field theories on such geometries in a linearized approximation, by using free scalar fields as a model. Perturbations caused by shockwaves exist above the wave front and are solutions to a characteristic Cauchy problem with initial data on the wave front determined by a supertranslation of ingoing fields. A special attention is paid to perturbations of fields of point-like sources generated by plane-fronted gravitational shockwaves. One has three effects: conversion of non-stationary perturbations into an outgoing radiation, a spherical scalar shockwave which appears when the gravitational wave hits the source, and a plane scalar shockwave accompanying the initial gravitational wave. Our analysis is applicable to gravitational shockwaves of a general class including geometries sourced by null particles and null branes.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).