Bioengineering approach for the design of magnetic bacterial cellulose membranes

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-11-07 DOI:10.1038/s43246-024-00562-9
Sundaravadanam Vishnu Vadanan, Rupali Reddy Pasula, Neel Joshi, Sierin Lim
{"title":"Bioengineering approach for the design of magnetic bacterial cellulose membranes","authors":"Sundaravadanam Vishnu Vadanan, Rupali Reddy Pasula, Neel Joshi, Sierin Lim","doi":"10.1038/s43246-024-00562-9","DOIUrl":null,"url":null,"abstract":"Biopolymer research has led to the development of novel products through innovative strategies. Their functionalization is typically achieved by physical/chemical methods that require harsh chemicals or mechanical treatments. These functionalities could be alternatively achieved by employing bioengineering design methods. We demonstrate, a bioengineered dual-microbial approach to create functional bacterial cellulose from microbial workhorses. Komagataeibacter hansenii ATCC 53582 is used to produce bacterial cellulose and engineered E. coli is used to functionalize the matrix with a recombinant fibrous protein. The E. coli harbours synthetic genes for the secretion of amyloid curli protein subunit (CsgA) tagged with short functional M6A peptide domains. The incorporation of M6A-functionalized amyloid proteins into bacterial cellulose facilitates magnetite nanoparticle nucleation. We achieved a saturation magnetization of 40 emu g−1, a three-fold increase compared to existing strategies. The magnetic bacterial cellulose films demonstrate cytocompatibility and accelerate cell migration in the presence of magnetic field. Microbes have been shown to be effective for synthesizing functional materials. Here, bacterial cellulose is created via a dual microbial approach, with magnetite nanoparticles used to enhance magnetic behavior.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00562-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00562-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biopolymer research has led to the development of novel products through innovative strategies. Their functionalization is typically achieved by physical/chemical methods that require harsh chemicals or mechanical treatments. These functionalities could be alternatively achieved by employing bioengineering design methods. We demonstrate, a bioengineered dual-microbial approach to create functional bacterial cellulose from microbial workhorses. Komagataeibacter hansenii ATCC 53582 is used to produce bacterial cellulose and engineered E. coli is used to functionalize the matrix with a recombinant fibrous protein. The E. coli harbours synthetic genes for the secretion of amyloid curli protein subunit (CsgA) tagged with short functional M6A peptide domains. The incorporation of M6A-functionalized amyloid proteins into bacterial cellulose facilitates magnetite nanoparticle nucleation. We achieved a saturation magnetization of 40 emu g−1, a three-fold increase compared to existing strategies. The magnetic bacterial cellulose films demonstrate cytocompatibility and accelerate cell migration in the presence of magnetic field. Microbes have been shown to be effective for synthesizing functional materials. Here, bacterial cellulose is created via a dual microbial approach, with magnetite nanoparticles used to enhance magnetic behavior.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计磁性细菌纤维素膜的生物工程方法
生物聚合物研究通过创新策略开发出了新型产品。它们的功能化通常是通过物理/化学方法实现的,需要苛刻的化学品或机械处理。而采用生物工程设计方法则可以实现这些功能。我们展示了一种生物工程双微生物方法,从微生物工作母机中创造出功能性细菌纤维素。Komagataeibacter hansenii ATCC 53582 用于生产细菌纤维素,工程大肠杆菌用于用重组纤维蛋白使基质功能化。大肠杆菌含有分泌淀粉样凝集蛋白亚基(CsgA)的合成基因,并标记有短的功能性 M6A 肽域。将 M6A 功能化淀粉样蛋白加入细菌纤维素可促进磁铁矿纳米粒子成核。我们的饱和磁化率达到了 40 emu g-1,比现有策略提高了三倍。磁性细菌纤维素薄膜具有细胞相容性,并能在磁场作用下加速细胞迁移。微生物已被证明能有效合成功能材料。在这里,细菌纤维素是通过双重微生物方法制成的,磁铁矿纳米粒子用于增强磁性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Thermodynamic evidence for polaron stabilization inside the antiferromagnetic order of Eu5In2Sb6 Benefits and complexity of defects in metal-organic frameworks Multi-sensing yarns for continuous wireless sweat lactate monitoring Unexpected band structure changes within the higher-temperature antiferromagnetic state of CeBi Bioengineering approach for the design of magnetic bacterial cellulose membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1