{"title":"Direct Extraction Methods for RF Characterization of Extrinsic Parasitic Parameters in 28 nm FDSOI MOSFETs Up to 110 GHz","authors":"Xuejing Yang;Kyounghoon Yang","doi":"10.1109/JEDS.2024.3486736","DOIUrl":null,"url":null,"abstract":"In this paper, we report on newly introduced direct extraction methods applied for determining the extrinsic parasitic capacitances and inductances in RF test structures of Fully-Depleted-Silicon-On-Insulator (FDSOI) MOSFETs with a 28 nm gate length. Our approach leverages dummy structures and employs closed-form extraction techniques for precise parasitic parameter determination. Notably, we apply the closed-form extraction strategy for the first time to quantify the parasitic inductances of RF FDSOI-MOSFETs. To verify the accuracy of our extraction results based on a direct approach without optimization, we perform error analysis by comparing the modeled S-parameters of the small signal equivalent circuit to the measured results. Good agreement between the modeled and measured results not only at the cold bias but also at the saturation-mode operation region is achieved up to 110 GHz.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736559","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10736559/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we report on newly introduced direct extraction methods applied for determining the extrinsic parasitic capacitances and inductances in RF test structures of Fully-Depleted-Silicon-On-Insulator (FDSOI) MOSFETs with a 28 nm gate length. Our approach leverages dummy structures and employs closed-form extraction techniques for precise parasitic parameter determination. Notably, we apply the closed-form extraction strategy for the first time to quantify the parasitic inductances of RF FDSOI-MOSFETs. To verify the accuracy of our extraction results based on a direct approach without optimization, we perform error analysis by comparing the modeled S-parameters of the small signal equivalent circuit to the measured results. Good agreement between the modeled and measured results not only at the cold bias but also at the saturation-mode operation region is achieved up to 110 GHz.