Radio Frequency Fingerprinting for WiFi Devices Using Oscillator Drifts

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Instrumentation and Measurement Pub Date : 2024-11-01 DOI:10.1109/TIM.2024.3485452
Chaozheng Xue;Tao Li;Yongzhao Li;Yuhan Ruan;Rui Zhang;Octavia A. Dobre
{"title":"Radio Frequency Fingerprinting for WiFi Devices Using Oscillator Drifts","authors":"Chaozheng Xue;Tao Li;Yongzhao Li;Yuhan Ruan;Rui Zhang;Octavia A. Dobre","doi":"10.1109/TIM.2024.3485452","DOIUrl":null,"url":null,"abstract":"Radio frequency fingerprint (RFF) identification is a promising technique that exploits hardware impairment-induced features to achieve specific device identification. Among RFF features, carrier frequency offset (CFO) as a hotspot feature has received widespread attention. Since CFO is time-variant, existing research suggests compensating for its drift; however, this article emphasizes using the drift of CFO. Correspondingly, a novel RFF feature, named cyclic similarity (cyc-similarity), is proposed to depict the oscillator drift. Simply combining the cyc-similarity feature with a K-nearest neighbor (KNN) classifier, the system can achieve superior temporal and receiver generalization performance. On a public dataset of WiFi devices, the proposed method outperforms the existing methods.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"73 ","pages":"1-4"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10740330/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Radio frequency fingerprint (RFF) identification is a promising technique that exploits hardware impairment-induced features to achieve specific device identification. Among RFF features, carrier frequency offset (CFO) as a hotspot feature has received widespread attention. Since CFO is time-variant, existing research suggests compensating for its drift; however, this article emphasizes using the drift of CFO. Correspondingly, a novel RFF feature, named cyclic similarity (cyc-similarity), is proposed to depict the oscillator drift. Simply combining the cyc-similarity feature with a K-nearest neighbor (KNN) classifier, the system can achieve superior temporal and receiver generalization performance. On a public dataset of WiFi devices, the proposed method outperforms the existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用振荡器漂移对 WiFi 设备进行无线电频率指纹识别
射频指纹(RFF)识别是一种很有前途的技术,它利用硬件损伤引起的特征来实现特定设备的识别。在射频指纹特征中,载波频率偏移(CFO)作为一种热点特征受到广泛关注。由于载波频率偏移是时变的,现有研究建议对其漂移进行补偿;但本文强调利用载波频率偏移的漂移。因此,本文提出了一种名为 "循环相似性(cyc-similarity)"的新型 RFF 特征来描述振荡器漂移。只需将循环相似性特征与 K 近邻(KNN)分类器相结合,系统就能实现卓越的时间和接收器泛化性能。在一个公开的 WiFi 设备数据集上,所提出的方法优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
期刊最新文献
Errata to “A Spherical Coil Array for the Calibration of Whole-Head Magnetoencephalograph Systems” Adaptive EPI-Matching Cost for Light Field Disparity Estimation Robust Surface Area Measurement of Unorganized Point Clouds Based on Multiscale Supervoxel Segmentation Optimized Fuzzy Slope Entropy: A Complexity Measure for Nonlinear Time Series A Multidepth Step-Training Convolutional Neural Network for Power Machinery Fault Diagnosis Under Variable Loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1