{"title":"Design and Performance Evaluation of Linearly Extensible Cube-Triangle Network for Multicore Systems","authors":"Savita Gautam;Abdus Samad;Mohammad S. Umar","doi":"10.1109/TPDS.2024.3486219","DOIUrl":null,"url":null,"abstract":"High-performance interconnection networks are currently being used to design Massively Parallel Computers. Selecting the set of nodes on which parallel tasks execute plays a vital role in the performance of such systems. These networks when deployed to run large parallel applications suffer from communication latencies which ultimately affect the system throughput. Mesh and Torus are primary examples of topologies used in such systems. However, these are being replaced with more efficient and complicated hybrid topologies such as ZMesh and x-Folded TM networks. This paper presents a new topology named as Linearly Extensible Cube-Triangle (LECΔ) which focuses on low latency, lesser average distance and improved throughput. It is symmetrical in nature and exhibits the desirable properties of similar networks with lesser complexity and cost. For N x N network, the LECΔ topology has lesser network latency than that of Mesh, ZMesh, Torus and x-Folded networks. The proposed LECΔ network produces reduced average distance, diameter and cost. It has a high value of bisection width and good scalability. The simulation results show that the performance of LECΔ network is similar to that of Mesh, ZMesh, Torus and x-Folded networks. The results verify the efficiency of the LECΔ network as evaluated and compared with similar networks.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10734253/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance interconnection networks are currently being used to design Massively Parallel Computers. Selecting the set of nodes on which parallel tasks execute plays a vital role in the performance of such systems. These networks when deployed to run large parallel applications suffer from communication latencies which ultimately affect the system throughput. Mesh and Torus are primary examples of topologies used in such systems. However, these are being replaced with more efficient and complicated hybrid topologies such as ZMesh and x-Folded TM networks. This paper presents a new topology named as Linearly Extensible Cube-Triangle (LECΔ) which focuses on low latency, lesser average distance and improved throughput. It is symmetrical in nature and exhibits the desirable properties of similar networks with lesser complexity and cost. For N x N network, the LECΔ topology has lesser network latency than that of Mesh, ZMesh, Torus and x-Folded networks. The proposed LECΔ network produces reduced average distance, diameter and cost. It has a high value of bisection width and good scalability. The simulation results show that the performance of LECΔ network is similar to that of Mesh, ZMesh, Torus and x-Folded networks. The results verify the efficiency of the LECΔ network as evaluated and compared with similar networks.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.