Muhammad Abdullah Hanif;Ayoub Arous;Muhammad Shafique
{"title":"DREAMx: A Data-Driven Error Estimation Methodology for Adders Composed of Cascaded Approximate Units","authors":"Muhammad Abdullah Hanif;Ayoub Arous;Muhammad Shafique","doi":"10.1109/TCAD.2024.3447209","DOIUrl":null,"url":null,"abstract":"Due to the significance and broad utilization of adders in computing systems, the design of low-power approximate adders (LPAAs) has received a significant amount of attention from the system design community. However, the selection and deployment of appropriate approximate modules require a thorough design space exploration, which is (in general) an extremely time-consuming process. Toward reducing the exploration time, different error estimation techniques have been proposed in the literature for evaluating the quality metrics of approximate adders. However, most of them are based on certain assumptions that limit the usability of such techniques for real-world settings. In this work, we highlight the impact of those assumptions on the quality of error estimates provided by the state-of-the-art techniques and how they limit the use of such techniques for real-world settings. Moreover, we highlight the significance of considering input data characteristics to improve the quality of error estimation. Based on our analysis, we propose a systematic data-driven error estimation methodology, DREAMx, for adders composed of cascaded approximate units, which covers a predominant set of LPAAs. DREAMx in principle factors in the dependence between input bits based on the given input distribution to compute the probability mass function (PMF) of error value at the output of an approximate adder. It achieves improved results compared to the state-of-the-art techniques while offering a substantial decrease in the overall execution(/exploration) time compared to exhaustive simulations. Our results further show that there exists a delicate tradeoff between the achievable quality of error estimates and the overall execution time.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"3348-3357"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745866/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the significance and broad utilization of adders in computing systems, the design of low-power approximate adders (LPAAs) has received a significant amount of attention from the system design community. However, the selection and deployment of appropriate approximate modules require a thorough design space exploration, which is (in general) an extremely time-consuming process. Toward reducing the exploration time, different error estimation techniques have been proposed in the literature for evaluating the quality metrics of approximate adders. However, most of them are based on certain assumptions that limit the usability of such techniques for real-world settings. In this work, we highlight the impact of those assumptions on the quality of error estimates provided by the state-of-the-art techniques and how they limit the use of such techniques for real-world settings. Moreover, we highlight the significance of considering input data characteristics to improve the quality of error estimation. Based on our analysis, we propose a systematic data-driven error estimation methodology, DREAMx, for adders composed of cascaded approximate units, which covers a predominant set of LPAAs. DREAMx in principle factors in the dependence between input bits based on the given input distribution to compute the probability mass function (PMF) of error value at the output of an approximate adder. It achieves improved results compared to the state-of-the-art techniques while offering a substantial decrease in the overall execution(/exploration) time compared to exhaustive simulations. Our results further show that there exists a delicate tradeoff between the achievable quality of error estimates and the overall execution time.
期刊介绍:
The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.